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Shallow Water Equation Simulation’s Super-resolution Using GAN

ANONYMOUS AUTHOR(S)
In this paper, we follow [Xie et al. 2018]’s idea, trying to extend the generative
adversarial learning into physics problems’ super-resolution task. We extend
the GAN based super-resolution for shallow water equation simulation
and show that the original [Xie et al. 2018]’s method cannot handle this
problem well, mainly because the training strategy, the neural network’s
trained degree of freedom(DOF) limitation and the discriminator loss are
not optimal for shallow water equation simulation’s super-resolution task.
And we try to modify these three aspects to improve the GAN’s ability for
SWE simulation’s super-resolution by considering the character of SWE
simulation under some specified starting value condition.

Additional Key Words and Phrases: physics-based deep learning, generative
models, computer animation, fluid simulation
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1 INTRODUCTION
In the computer vision and machine learning field, the generative
models have highly success for generating new images. But how to
extend these generative models to other fields is not investigated
sufficiently. In [Xie et al. 2018], they extend the GAN into the navier-
stokes equation driven smoke density field’s super resolution task
and show that the modified GAN has some ability to preserve the
temporal coherence of the generated physics sequence data. Fol-
lowing this, we investigate the ability of GAN for another physics
process–shallow water equation simulation’s super-resolution and
show that the GAN’s competency boundary to complete plausible
mapping of low resolution data and high resolution counterparts.
Different from smoke’s super-resolution whose spatial continuity is
not obvious, the SWE simulation sequence has more symmetric and
visible ring cycle details in Fig. 1(a) which is difficult to recover. And
the wave’s strong interference phenomenon leads the difference
between frames huge but the smoke simulation sequence does not
have such interference like SWE simulation. So how to recover such
highly detailed but tiny feature of high resolution data from its
low resolution counterparts is a challenge in super-resolution task,
seeing in Fig. 1.

In [Xie et al. 2018], they use the 2D or 3D smoke simulation results
as data to train or test with a modified GAN network. For example,
in 2D, the input data is pairs of low resolution smoke data x (one
channel for density field, two optional channels for velocity fields)
and its high resolution smoke density counterparts y. Firstly, they
run numerical simulation with high resolution grid and get the high
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(a) hi-res ground truth (b) low-res down sampling

Fig. 1. Ring cycle details of high resolution SWE simulation and its
low resolution counterpart (a) A frame of the high resolution SWE simula-
tion results shows many symmetric and spatial continuous ring cycle details
which is difficult for super-resolution because it is so tiny. (b) This frame’s
low resolution down sampled data. When showing the low-resolution input
data, we always employ nearest neighbor up-sampling, in order to not make
the input look unnecessarily bad.

resolution results(density field and velocity field) and do a gaussian
blur with fixed sigma and next do a nearest neighbor interpolation
to get its low resolution counterparts. The GAN’s generator G will
get input of low resolution x(one density field and two optional
velocity fields) and give out high resolution fake density field G (x )
and a spatial discriminator Ds will judge whether it is real data y
by numerical simulation or generator’s faked results G (x ) and a
tempo discriminator Dt will judge continuous three frames are real
data Ỹ or generator’s faked results G̃ (X̃ ) where the X̃ represents
the continuous three frames of low resolution data. This is the work
of [Xie et al. 2018] mainly. In addition, they process the raw data
with some rotation transformation to do a data augmentation. The
modified GAN structure can be shown as below in Fig. 2.

1.1 Related Works

1.2 Contributions

2 PROBLEM STATEMENT
Shallow water equation (SWE) is a PDE which generates a set of
height field over a flat domain to approximate the motion of fluid
(wave, wake etc.). Different from the 2D or 3D Navier-Stokes equa-
tion driven smoke simulation, the SWE gives simulation for water
in a domain Ω with a 2.5D status. In shallow water equation simu-
lation, under the assumption that the vertical velocity component
is constant, the water will be modeled as a varying height field
h(t ) : Ω → �, and velocity field u (t ) : Ω → �2 as time passes. As a
consequence, the result of a SWE with specified boundary condition
B can be viewed a sequence of 3-channel (one for height h, two for
velocityu) imagesY . We useYk∗ , ∗ ∈ {h,u} to indicate the 2D “image”
of channel ∗ at kth frame, where the Y0 is the height channels and
the Y1 is the ux velocity component channel and the Y2 is the uy
velocity component channel.

Giving a high resolution result Y , the down-sampled low reso-
lution counterpart is denoted as X . The problem to be addressed
in this paper is to learn a function F that estimates the Y0 from
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Fig. 2. The tempoGAN structure’s overview The three neural networks (blue boxes) are trained in conjunction. The data flow between them is highlighted
by the red and black arrows.

X . Because we only concern the high resolution height field data,
we ignore the Y1 and Y2 and use Y to express the high resolution
height field channel Y0 directly in the following and keep the X to
be X0 which uses only the height field channel or X0,1,2 which uses
the height field channel and the two velocity channels together as
generator G’s input. In other words, we would like to find

F (X ) ≈ Y , (1)

where the ≈ indicates a properly defined Loss function (see below).
It should be noticed that the above requirement is not equivalent to
frame-by-frame estimation, i.e. we are not asking for a function

F (Xk ) ≈ Yk , (2)

which cannot use temporal information in sequence X .

2.1 Loss Functions
Firstly, we follow [Xie et al. 2018]’s idea to test its ability for shallow
water equation simulation’s super-resolution task. In their work, the
network structure shown in Fig. 2 is used. We replace the density
field with height field named, and keep all the left the same.

In the following loss definition, x ,y,G (x ) indicate a single frame
in X and Y and the faked result to approximate the y respectively,
and X̃ and Ỹ and G̃ (X̃ ) are consecutive three frames in X and Y and
the faked results to approximate the Ỹ respectively. It is easy to see
that the first loss

LossDs (Ds ,G ) = −Em[logDs (x ,y)]−En[log(1−Ds (x ,G (x )))] (3)

only uses and measures the spatial information to update the spatial
discriminator Ds . The second loss

LossDt (Dt ,G ) = −Em[logDt (Ỹ )] − En[log(1 − Dt (G̃ (X̃ )))] (4)

uses andmeasures temporal information of three consecutive frames
to update the temporal discriminator Dt . The last loss is defined as

LossG (Ds ,Dt ,G ) = −En[logDs (x ,G (x ))] − λDt En[logDt (G̃ (X̃ ))]

+En, jλ
j
f | |F

j (G (x )) − F j (y) | |22 + λL1En | |G (x ) − y | |1.

(5)

to update the generator G.
We denote the group of above three loss with parameter λDt > 0

as L̃, which measures both spatial and temporal loss. A new group
of above three loss is defined as the composition of L and for L,
LossG with parameter λDt = 0 which only measures spatial loss,
and further we need not to update the temporal discriminator with
the temporal discriminator’s loss Eq. (4). The corresponding result
for an input x is written as L̃(x ) and L(x ) respectively.

2.2 Data Set
Currently, to simplify the problem, we solve shallow water equation
with standard MAC finite difference discretization with fixed high
resolution grid, time interval, gravity, fluid density, uniform depth
5, and only left the boundary condition B to control the variety of
the data set.
We noticed that although each channel is similar to a sequence

of common gray images, or the 2D smoke data. However, in our
data, the height field (and velocities) can be in arbitrary range in-
stead of [0, 1] (or [0, 255]). For instance, it can be in [0, 0.5] or even
[−500, 1500]. To alleviate this issue, we limited the boundary con-
dition B as a flat height field and zero velocity, but only lift three
random picked points from its rest height 5 to 15 at the first frame
of the sequence. With such a setting of boundary condition, the
high resolution height h(t ) is usually in range of [4.5, 15] and the
magnitude of velocity |u (t ) | is usually in range [0.15, 3.2]
After getting the high resolution results, we do a gaussian blur

with fixed sigma parameter and a nearest neighbor interpolation

, Vol. 1, No. 1, Article . Publication date: March 2019. 2019-03-04 00:23. Page 2 of 1–7.
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abb. meaning
Hi hi-res ground truth
Lo low-res input
L̃ spatial and temporal loss
L spatial only loss

Table 1. Abbreviation

with a fixed factor 4 to get the low resolution data. The down sam-
pling operator is denoted as D.

3 CHALLENGES AND EXPERIMENTAL RESULTS
We made a series experiments and found that it is indeed a very
challenge problem and cannot be easily solved although the data
set has been greatly simplified.

3.1 Parameter Setting
In the following figures, we label each result using the words in
Tab. 1.

We made the following experiments:
(1) Feature related
• Using velocity component or not, this also loss related (v).

(2) Loss related:
• Tuning the detail enhancement coefficients which means
tuning some GAN’s hyper-parameters like the loss weight
or learning rate or iteration number tuning for generator
and discriminator (d).
• Using temporal loss or not (t).
• Adding gradient loss or not (g).

(3) Net related
• Using different activation function (RELU or LRELU).
• Using different DOFs of the net (N or M layers).

(4) Data set related
• Sequence or single frame training set (s or f).
• Testing on different input.

So there are 7 independent settings. To avoid make all the combina-
tion of the above, we organize the experiments as follows:
• We first show that the state-of-the-art method (“+v+d+t-
g+RELU+N+s”) does not work regardless how the hyper-
parameters are tuned. So, in the following experiments,we fix
these hyper-parameters to be consistent which means “-d”.
• Then, on experiments “±v-d-t-g+RELU+N+f” we show that
using a single frame as the training set, velocity component
is helpful. So we always toggle the velocity component on in
the following experiments which means “+v”.
• We also confirmed that temporal loss is useful on experiments
“+v-d±t-g+RELU+N+f”.
• We show that “+v-d-t-g+RELU+N+f” is better than “+v-d-
t-g+RELU+M+f”, so we always use N-layers the following
experiments.
• We show that +g is not better than -g in “+v-d+t±g+RELU+N+f”.
• Experiments “+v-d-t-g+(RELU|LRELU)+N+f” show than leaky
relu (LRELU) is better than RELU. So we choose to use LRELU
instead of using RELU in [Xie et al. 2018].

In summary, we have the table:

name Better choice Experiments Fig.
vel (v) + “±v-d-t-g+RELU+N+f” 5

detail (d) - “+v+d+t-g+RELU+N+s” 3, 4
tempo (t) + “+v-d±t-g+RELU+N+f” 8

gradient (g) - “+v-d+t±g+RELU+N+f” 11
act. func. LRELU “+v-d-t-g+(RELU|LRELU)+N+f” 10
layers N “+v-d-t-g+RELU+(N|M)+f” 9

Table 2. Variants

Details of the above experiments can be found below:
(1).The results using [Xie et al. 2018]’s training strategy

We train the GAN with such five sequences which have 120 frames
with [Xie et al. 2018]’s training method which uses mini-batch to
optimize the GAN and test GAN on another non-trained sequence.
We still get blurry output no matter how I do loss weight or learning
rate or iteration number tuning for generator and discriminator,
using full Eqs. (3) to (5) for training. Mainly like this in Fig. 3:

(a) Hi y (b) Lo x = D (y) (c) L̃(x )

Fig. 3. As the [Xie et al. 2018]’s training method, it tends to generate blur
results.

(2).The results using negative layer loss weight with [Xie
et al. 2018]’s training strategy
In [Xie et al. 2018], they show that when use a negative layer loss
weight λjf , it gives sharp boundary feature preserving. But in (1)’s
training configuration, it shows that the training process may di-
verge easily,seeing Fig. 4, using full Eqs. (3) to (5) and training the
GAN with such five sequences with a mini batch which size is 16 :

(a) Hi y (b) Lo x = D (y) (c) L̃(x )

Fig. 4. The negative layer loss weight with the [Xie et al. 2018]’s training
method, it leads the GAN to diverge as shown in (a)

2019-03-04 00:23. Page 3 of 1–7. , Vol. 1, No. 1, Article . Publication date: March 2019.
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(3). Under this dilemma, I want to check whether the GAN has no
ability to recover tiny features or the training method leads it tends
to be blurry because each trained mini batch gives such a different
gradient direction that cannot approximate the global training set
gradient direction well. So I simplify the train data with using only
one frame’s height and velocity data( unnecessary, we can train
GAN without using velocity data ) to test whether the GAN has
the ability to recover the high resolution’s ring cycle details. So we
train the GAN with all training data–only one frame’s data every
time and do the same amount of iterations as above.

(3.1).The influence of whether using two velocity channels
as input
Under this condition, we can see that if the input low resolution
data includes velocity, it can give out more continuous faked data,
using L spatial only loss for training. Fig. 5:

(a) Hi y for training (b) Lo x = D (y) for training

(c) L(x0,1,2) using velocity (d) L(x0) not using velocity

Fig. 5. It shows that using velocity field leads more continuous and smooth
results after the same amount of iterations

(3.2).The influence of the selected frame as training set
This frame data will highly decide what feature to be learned. And
it shows that the GAN can learn the tiny details and when you test
the GAN with another frame including the similar details, it will be
recovered, using L spatial only loss for training. Fig. 6:

(3.3).The CNN cannot learning the feature’s orientation
The convolution cannot learn the feature’s orientation which means
that the learned feature dose not meet the rotation invariant. Fig. 7:

This can be solved by rotating the training data or use a rota-
tion invariant CNN for generator. Maybe it can be a contribution,
because of the high symmetry ring nature of SWE simulation, the
rotation invariant should be satisfied plausibly.

(3.4).The learned feature in this setting is limited and the
influence of whether using the temporal discriminator
This setting leads that this GAN cannot learn other feature, so

(a) (b)

(c) (d) (e)

Fig. 6. The GAN can learn thin details in this training configuration
(a) Hi ytrain (b) L(xtrain ) (c)Hi ytest (d) L(xtest ) in this training setting.
In this training setting,the tested frame generated by generator showing
tiny but detailed feature and (e) L(xtest ) in [Xie et al. 2018]’s training
setting. In the [Xie et al. 2018]’s training setting, the tested frame generated
by generator showing blur artifacts with no detailed feature.

(a)Hi ytrain (b) L(xtrain )

(c)Hi ytest (d) L(xtest )

Fig. 7. The CNN does not satisfy rotation invariant, so the learned
feature is orientation dependent as shown in (b) and (d) where (b) The
trained frame generated by generator, showing very similar results as ground
truth, but the details’ orientation are mainly pointing to the upper left but (d)
The tested frame generated by generator, showing that the details pointing
to the upper left are better learned than the details pointing to the lower
right.

when testing data dose not include the similar feature as the trained
frame’s data, it will not be recovered correctly, seeing Fig.8(d), but
if we use Eqs. (3) to (5) for this training frame and its two adjacent
frames, the testing data’s quality can be improved obviously, seeing
Fig.8(e):

(3.5).The influence of the trained DOF of the spatial dis-
criminator
We show that when we use only one frame’s density and velocity
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457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

Shallow Water Equation Simulation’s Super-resolution Using GAN • :5

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

(a)Hi ytrain (b) L(xtrain )

(c)Hi ytest (d) L(xtest ) L̃(xtest )

Fig. 8. If the tested frame does not have the similar feature as the trained
frame, the generated results are bad, but if we train the GAN using temporal
discriminator for this training frame and its two adjacent frames, the testing
data’s quality can be improved obviously.

data as generator’s input and do not use the tempoGAN’s tempo
discriminator and only use the spatial discriminator, if the spatial
discriminator does not include enough trained parameter DOF, the
result will be only suboptimal. Here we call the original number of
discriminator’s training DOF as N , and we decrease the size of the
last convolution layer to be the half of N and this will lead the final
full connect layer’s trained DOF to be half of the the N and we call
this new number of trained DOF for the spatial discriminator asM .
Fig. 9:

(a) (b) (c)

Fig. 9. If we decrease the DOF of spatial discriminator, the result
will be worse after the same amounts of iterations (a) Hi ytrain (b)
Llarдe (xtrain ). The trained frame generated by generator if we use the
original spatial discriminator as [Xie et al. 2018].(c) Lsmall (xtrain ). The
trained frame generated by generator if we slightly decrease the trained
parameter DOF of the spatial discriminator, leading the generated result
to have stronger block and blur artifacts, showing that increase the GAN’s
non-linearity may lead to better results.

(3.6).The influence of whether using relu or leaky relu for
generator’s activation function
Our experiment’s results also show that compared to using relu
activation function for generator in [Xie et al. 2018], it is better to
use leaky relu activation function for generator to avoid the sparse
feature selection because of the relu activation function. We check
this with using L spatial only loss for training. Fig. 10:

(a)Hi ytrain (b)Lleaky_r elu (xtrain ) (c)Lr elu (xtrain )

(d)Hi ytest_0 (e)Lleaky_r elu (xtest_0) (f)Lr elu (xtest_0)

(g)Hi ytest_1 (h)Lleaky_r elu (xtest1) (i)Lr elu (xtest_1)

Fig. 10. Compared to using relu activation function for generator, it
is better to use leaky relu activation function for generator For (b)
and (c), the difference is not obvious, but when we test it, the relu’s results
are worse obviously. Comparing the (e)and(f) or comparing (h)and(i), it
shows the relu’s generated results are worse than using leaky relu.

(3.7).The influence of adding a spatial gradient penalty to
generator’s loss
For more, we think that for SWE super resolution task, the high res-
olution version’s spatial gradient is important, so we try to penalize
the l2 norm of the difference between the generated results’ spatial
gradient and the ground truth’s spatial gradient, mathematically,
which means that we add another term λL2En | |∇G (x ) − ∇y | |22 into
Eq. (5) and train the GAN with these new Eqs. (3) to (5). But unfor-
tunately, the results with using spatial gradient penalty is blurrier
than the results without using spatial gradient penalty. Fig. 11:

(a) (b) (c)

Fig. 11. (a) Hi ytrain (b) JLдrad (xtrain ). The trained frame generated by
generator with using gradient penalty,showing blurrier results than that
without using gradient penalty. (c)L̃(xtrain ). The trained frame generated
by generator without using gradient penalty.

3.2 Asynchronous training strategy for details
So the current best combination is “+v-d+t-g+LRELU+N”. But even
on this setting, using sequence data as the [Xie et al. 2018]’s strategy
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(each time we choose a mini-batch from the training sets to optimize
the GAN), the results are still blurry.

Inspired by our result trained by one frame which always use the
global training set’s gradient to optimize the GAN, We find that for
SWE’s super resolution task, if we want to capture sequence data’s
diverse but tiny features as much as possible, we need to optimize
the GAN using the global training set’s gradient for each time. But
because of the limitation of the GPU memory currently, we use
the gradient to optimize the GAN asynchronously which means
that we separate the training set into some disjoint mini-batches
and we compute the gradient for per mini-batch and accumulate
these gradients into the global gradient to optimize the GAN once in
one optimization iteration. This is useful for generating these tiny
features and preventing the blur artifacts with [Xie et al. 2018]’s
training strategy. see Fig. 12’s (a),(b) and (c). We call this strategy as
“asynchronously training”.

(a) Hi ytest_0 (b) L̃(xtest_0) asy (c) L̃(xtest_0) ori

(d) Hi ytest_1 (e) L̃(xtest_1) asy

Fig. 12. The asynchronous training method can generate more features that
original method as (b) and(c) shows.But the trained GAN still only suit for
the similar starting height field condition as shown in (d) The corresponding
high resolution height field as ground truth to be tested, but the tested
starting height field of this frame is bounded by [10,20] and (e) The tested
frame generated by generator is unusable.

Even with the asynchronously training strategy for better detail
recovery, there are still problems about generality.
• Rotation: Although this asynchronous training strategy can
solve the blur artifacts, which means that we can get more
tiny features on training set’s super resolution that cannot
be accomplished by the [Xie et al. 2018]’s original mini-batch
training strategy, we still have some other difficulty to apply
the GAN to a new SWE sequence’s super resolution because
the CNN is not rotation invariant. If the training set’s sampled
frames are such different with the testing set, the testing set’s
results that is not captured by training set will still be blurrier
than the part that is captured by training set. So we need to
sample the training set uniformly: one method is to rotate
the raw training set 90 ∗ i (i = 1, 2, 3) degrees to augment
the training sets that can capture the possible orientation of

testing data at the most extent; another method is simpler
than the first that we give the initial boundary condition
central symmetrically and generate the training sets. With
this uniform sampling, we get a suitable training set and then
train the GAN with the asynchronous strategy, we can get
much better results on the testing set’s super resolution task.
• Height and boundary conditions: Nomatter the (3)’s train-
ing method or the (1)’s training method, it will only suit for
the similar height field bounded by [4.5,15]. It cannot be used
when you change any boundary condition and parameter:
gravity, fluid density or using other starting height field such
as bounded by [10,20], using using L spatial only loss for
training. see Fig. 13. For more, we extend the (3)’s training
method into the asynchronous training method for sequence
training not a single frame, but when we modify the testing
set’s boundary condition like Fig. 13 and apply the GAN for
it, we still have bad results. see Fig. 12’s (d) and (e). So the
no-bounded height field of SWE sequence is a challenge for
super resolution.

(a)Hi ytrain (b) L(xtrain )

(c)Hi ytest (d) L(xtest )

Fig. 13. The trained GAN only suit for the similar starting height field
condition as shown in (c) The corresponding high resolution height field as
ground truth to be tested, but the tested starting height field of this frame
is bounded by [10,20] and (d) The tested frame generated by generator is
unusable.

• Detail increasing as time going: Evenwe assume our train-
ing and testing data are in a similar boundary condtion, the
change of complexity of the data also bring challenges.
Large variance of pattern is common in usual SWE results.
Unlike smoke, which usually goes blurred and smoothed,
SWE tends to generate more and more detailed vibrations
and this vibration can be overlaid because of its interfer-
ence/reflection phenomenon (see Fig. 14). In a word, as time
passes, the information entropy of 2D N-S smoke sequence
will not significantly increase but the information entropy of
SWE sequence will be too large to be learned. So we think
that the feature space becomes infinite and we cannot con-
struct a finite training data set to capture these features. This
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property brings the difficulty of having good generalization
ability.

(a) Hi yswe_t ime59 (b) Hi yswe_t ime89 (c) Hi yswe_t ime119

(d) Hi ysmoke_t ime59 (e) Hi ysmoke_t ime89 (f) Hi ysmoke_t ime119

Fig. 14. (a), (b) and (c)show three frames of SWE sequence. (d), (e) and
(f)show three frames of 2D-smoke density sequence. As we can see,as time
passes, the interference leads more and more different features compared
with the front frame. We can prove this interference can lead the numbers of
features have exponential growth. But for 2D smoke sequence, the features
to be learned are similar no matter for the front frame or the latter frame
which are some local curl with no interference! This difference leads a huge
challenge for SWE sequence’s super resolution. Make an analogy, for a
classification problem, give a pure eye image, you can classify it into the
correct eye category, but when you overlay such 1000 eye images into one
image, what is it and how can you classify it into eye or some other strange
category?

4 LIMITATIONS AND FUTURE WORK
Except for that the no-bounded height field and the interference and
overlaid details in SWE sequence bring the difficulty of having good
generalization ability, for the asynchronous training method,the
limitation is from the training time now. Although we can over-
come the blur artifacts with the asynchronous training strategy, it
need to have much longer training time than the mini batch based
training because for one time updating of trained weight, we need
to calculate the disjoint mini batch’s gradient in sequence and add
all once. So in a no parallel manner, the training time cost will
be [traininд set ′s size/mini − batch′s size] times as much as the
original training strategy’s cost if we want to make the weighting
updating times be the same. It can be alleviated by increasing the
memory of GPU or computing the per disjoint mini-batch’s gradient
distributedly and parallelly.
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