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Figure 1: Strand through springs and knotting. A strand through two springs and a knotted rod are simulated by our method. Using our
compact representation, these complex behaviors can be efficiently and stably simulated with perfect inextensibility.

Abstract

Piecewise linear inextensible Cosserat rods are usually represented by Cartesian coordinates of vertices and quaternions on the
segments. Such representations use excessive degrees of freedom (DOFs), and need many additional constraints, which causes
unnecessary numerical difficulties and computational burden for simulation. We propose a simple yet compact representation
that exactly matches the intrinsic DOFs and naturally satisfies all such constraints. Specifically, viewing a rod as a chain of
rigid segments, we encode its shape as the Cartesian coordinates of its root vertex, and use axis-angle representation for the
material frame on each segment. Under our representation, the Hessian of the implicit time-stepping has special non-zero
patterns. Exploiting such specialties, we can solve the associated linear equations in nearly linear complexity. Furthermore, we
carefully designed a preconditioner, which is proved to be always symmetric positive-definite and accelerates the PCG solver
in one or two orders of magnitude compared with the widely used block-diagonal one. Compared with other technical choices
including Super-Helices, a specially designed compact representation for inextensible Cosserat rods, our method achieves
better performance and stability, and can simulate an inextensible Cosserat rod with hundreds of vertices and tens of collisions
in real time under relatively large time steps.

CCS Concepts
• Computing methodologies → Physical simulation; • Animation → Animation with Constraints;

1. Introduction
Compared with the mass-spring model [SLF08], the Cosserat rod
model [Pai02, ST07, ST09] attaches material frames along the cen-
ter line, which helps to reproduce some interesting special phenom-
ena of a real rod, e.g., buckling caused by twisting. Therefore, it is
widely used in the simulation of hairs [KTS∗14], threads in yarn-
level cloths [KJM08] etc., and most of them are inextensible or
nearly inextensible. A discrete model of this type can be repre-
sented in a variety of ways, each of which leads to different nu-
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merical behaviors. This paper proposes a compact representation
and uses it in a robust implicit integrator with a carefully designed
preconditioner for efficiency.

1.1. Related work
There are many different ways to represent a Cosserat rod. A large
number of methods [ST07, ST09, WCU∗20] encode the rod shape
by Cartesian coordinates of the vertices on the center line, then di-
rectly represent the material frame in the world coordinates on each
segment between adjacent vertices by a unit quaternion. Though
simple and intuitive, for inextensible rods, length constraints on
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each segment are inevitable. Besides, one needs to constrain a
quaternion to be unit. Furthermore, because a thin rod is unshear-
able, one of the axes in the material frame should align with tangent
of the center line, posing additional alignment constraints.

A lot of methods can be used to handle the aforementioned intrinsic
(length, unit-quaternion, and axis-alignment) constraints. The most
common ones are penalty-based methods, Lagrange-multipliers
and their variants. Penalty-based methods are not accurate and may
lead to an ill-conditioned problem. Lagrange-multipliers meth-
ods [GHF∗07, SH10, DKWB18] are good in accuracy but solving
KKT systems containing many constraints is costly. The step and
projection (SAP) strategy can be used to enforce some decoupled
constraints, e.g., explicitly normalizing every quaternion in each
time step [ST07]. They generally introduce physical artifacts like
excessive dispersion.

As a result, people propose more compact representations that
intrinsically satisfy these constraints. As a typical method,
[BWR∗08, BAV∗10] first compute a twisting-free frame (i.e.,
Bishop frame) by parallel transport along the center line, then en-
code the material frame as the difference (twisting angles) with
respect to the Bishop frame. This representation eliminates the
unit-quaternion and alignment constraints naturally. However, the
stretch on segments is still left as a degree of freedom. So the fast
projection method [GHF∗07] is extended to enforce the inexten-
sibility constraints for inextensible rods. However, the length con-
straint is nonlinear. One needs to iteratively solve KKT systems
with the parameter-controlled termination condition. Early termi-
nation may lead to a large error while a large number of iterations
hurt the performance significantly. The Super-Helices [BAC∗06]
is a representation exactly matching the intrinsic DOFs of an in-
extensible Cosserat rod, which discretizes a rod into N inextensi-
ble elements whose material curvatures and twist, i.e., derivative
of the material frame, are constant in each element. To get a mate-
rial frame in the world coordinates from such a representation, one
needs to integrate the derivative from the beginning of the rod. This
integration brings a dense mass matrix and results in an algorithm
in the complexity of O(N2). It also makes the algorithm compli-
cated and even makes it difficult to use a highly stable implicit time
stepping scheme. [Ber09] reduces the complexity to linear, but as
shown in Fig. 6 of that paper, both [BAC∗06, Ber09] have stability
issues when using relatively large time steps. Therefore, many re-
cent rod simulation algorithms [SMSH18,WCU∗20] still follow the
representation of [ST07] though it comes with a lot of constraints.

Another strategy is to represent piecewise linear inextensible rods
as chains of articulated rigid bodies. [Had06] uses a reduced-
coordinate formulation to simulate strands. While this formulation
is capable of handling high bending and torsion stiffness, interac-
tion requirements such as contact with the environment are diffi-
cult to model. For real-time applications, the performance of this
method is not satisfactory. Recently, a very interesting articulated
object representation, RedMax [WWB∗19], along with an efficient
numerical method is proposed. This method recursively represents
the positions and orientations of each body with respect to its par-
ent one, and the resulting generalized-coordinates representation
favors an efficient solver through a block-diagonal preconditioner.

1.2. Contributions
Our method is inspired by RedMax [WWB∗19], but does not rep-
resent the orientation on each segment recursively. To be more spe-
cific, we find that simply replacing the unit quaternion on each
segment by the axis-angle representation and then using the chain
representation, all the length, unit-quaternion, and alignment con-
straints in conventional representation [ST07] can be naturally
eliminated. This representation is compact and can be easily in-
tegrated into a typical optimization-based implicit time integra-
tor [MTGG11] for unconditional stability and a classic active set
method [NW99] for collision handling. Besides, structure and non-
zero patterns of the Hessian share many similarities to [WWB∗19],
which leads to nearly linear complexity in solving linear equations
about it. However, using the common block-diagonal scheme to
construct the preconditioner [TWL∗18,WWB∗19] cannot fully ex-
ploit the advantage of our representation. Indeed, a carefully de-
signed hybrid one can significantly improve the convergence rate.
This preconditioner leads to a smaller condition number and can be
proved to be always symmetric positive-definite, which lays down
a solid base for stability.

In summary, the contributions of this work include:

• a compact representation that eliminates all the intrinsic con-
straints for inextensible Cosserat rods and is friendly for implicit
integrator with large time steps,

• an effective preconditioner of linear complexity for both con-
struction and solving which significantly accelerates the conver-
gence,

• and a proof that the preconditioner is symmetric positive-
definite.

2. Representation of Inextensible Cosserat Rods
Before elaborating on our method, we first describe the conven-
tional representation in [ST07] briefly.

In this representation, a non-looped inextensible Cosserat rod is dis-
cretized by n vertices on it, which split the rod into n−1 segments.
The shape of the rod is represented by the Cartesian coordinates pi
on i-th vertex. On i-th segment ei from pi to pi+1 with the rest
length li, a quaternion qi is used to indicate its material frame.
Then, the variables to represent such a rod are x = [p⊤,q⊤]⊤,
where p ∈ R3n are all vertex positions in Cartesian coordinates,
and q ∈ R4(n−1) is composed of quaternion-represented material
frames on all segments.

These 7n − 4 variables are not independent and the simulation
should carefully handle the following constraints among them:

• inextensible constraints:

∥pi+1 −pi∥− li = 0, (1)

• unit quaternion constraints:

∥qi∥−1 = 0, (2)

• unshearable constraints or alignment constraints:

d(qi)−
pi+1 −pi

∥pi+1 −pi∥
= 0, (3)
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where d is a function extracting the segment-aligned axis (e.g., the
third axis in [ST07]) from the material frame represented by qi.

2.1. The compact representation
The material frame is a rotation R ∈ SO(3), and there exist many
possible ways to represent it. The Lie algebra of it is a 3×3 skew-
symmetric matrix, and can be compactly represented as a vector
of length three, which is also named axis-angle representation. We
choose to replace the quaternion qi on the i-th segment by such a
representation ωi ∈ R3. The corresponding unit quaternion can be
easily computed from ωi as:

qi = B (ωi) =

[
cos

∥ωi∥
2

,
ωi

∥ωi∥
sin

∥ωi∥
2

]⊤
. (4)

When ∥ωi∥ goes to zero, we apply L’Hospital’s rule to avoid the
division-by-zero problem:

qi = lim
∥ωi∥→0

B (ωi) =
[
1,

ωi

2

]⊤
. (5)

This choice eliminates the unit quaternion constraints in Eq. 2.

The common 3× 3 matrix representation can also be easily com-
puted via exponential map according to Rodrigues’ rotation for-
mula:

mi = exp(ωi) . (6)

Now taking a chain representation shown in Fig. 2, the non-root
vertex positions on an inextensible rod can be recursively repre-
sented as below:

pi+1 = pi + lid(mi) = pi + lid(exp(ωi)), i = 1,2, · · · ,n−1. (7)

This eliminates the alignment constraints in Eq. 3 and inextensible
constraints in Eq. 1 simultaneously. One can also get the segment-
aligned axis through quaternion by d(B(ωi)), but the cost will be
higher.

Finally, we use the Cartesian coordinates pc = p0 to represent the
location of the root vertex.

= e0 = l0 d(exp( 0))

Figure 2: Chain structure. We propose a compact chain structure
without redundant degrees of freedom to represent an inextensible
Cosserat rod, i.e., a Kirchhoff rod.

Putting all of the above together, we use pc ∈ R3 at the root ver-
tex and ωi ∈R3 on i-th segment ei to representation the rod. Look
back to the conventional represent using 7n−4 variables in p and q,
there are 4(n− 1) linear independent constraints in Eqs. 1 to 3, so
there are only (7n − 4)− 4(n − 1) = 3n DOFs indeed. Our rep-
resentation s = [p⊤

c ,ω⊤]⊤ exactly has 3n DOFs, which perfectly
matches the nature of a non-looped inextensible piecewise linear

Cosserat rod. All the equality constraints in Eqs. 1 to 3 are unnec-
essary, which have been naturally satisfied when taking our rep-
resentation. Actually, our method perfectly models a special kind
of unshearable and inextensible Cosserat rod, i.e., the Kirchhoff
rod [Dil92].

3. Simulation
Under the conventional representation, implicit Euler time-stepping
leads to the following nonlinear constrained optimization prob-
lem [MTGG11]:

xt+∆t = argmin
x

E(x) =V (q)+Tp (p)+Tq (q)+G(p) , (8a)

s.t.
{

CE(x) = 0,
CI(x)≥ 0. (8b)

In the above equations, V (q) is the discrete bending and twist-
ing potential energy, Tp(p) and Tq(q) are translational and rota-
tional kinetic energies respectively. G(p) is the potential of ex-
ternal force fields (e.g., gravity). The specific equations for these
terms are in App. A, and more details about them can be found
in [ST07, WCU∗20].

A large number of equality constraints CE in Eq. 8b come
from Eqs. 1 to 3. They have been eliminated by replacing the con-
ventional representation by ours via the transformation T derived
from Eqs. 4, 5 and 7 and pc = p0:

x = T (s) . (9)

We handle the remaining equality constraints (e.g., the Dirichlet
boundary condition constraints) and the inequality constraints CI
which usually come from collisions by a classical active set frame-
work [NW99]. To be specific, in each iteration of the active set
method, we solve such a problem:

st+∆t = argmin
s

E(T (s)),

s.t. CA(T (s)) = 0.
(10)

The constraints CA are updated according to the current collision
situation and the remaining equality constraints. Roughly speaking,
the remaining equality constraints are always in the set CA and the
active inequality constraints (e.g., active collisions) in CI will be
inserted into the set CA and processed as equality constraints. At
the same time, non-active collisions in CI will be removed from
each iteration. In each iteration, the status can be back-traced to a
non-penetration status. A pseudo-code can be found in App. B.

3.1. SQP framework
In general, we follow the method in [PBH15] to solve the nonlin-
ear optimization problem in Eq. 10 under the sequential quadratic
programming (SQP) framework (Alg. 1). We use the line search
method [NW99] to improve the convergence rate of SQP, and the
merit function to evaluate the step length of line search is shown as
below:

φ(s,µ) = E(T (s))+ 1
µ
∥CA∥1 . (11)

To prevent the step from violating constraints a lot, µ is updated as
the reciprocal of the largest value of the Lagrange multipliers with
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regard to the current active constraints [NW99]. Specifically, we
construct a quadratic model of Eq. 10 at the current sk in each step
as below:

∆sk = argmin
∆s

1
2

∆s⊤Ak
∆s+bk⊤

∆s,

s.t. ∇sCA∆s+CA(T (sk)) = 0,
(12)

where, with J(s) = DT = ∂x/∂s,

bk = J(sk)⊤
∂E(x)

∂x

∣∣∣∣
x=T (sk)

,

Ak = J(sk)⊤
∂

2E(x)
∂x2

∣∣∣∣∣
x=T (sk)

J(sk) = Jk⊤HkJk.

Here, we drop ∂J(s)
∂s

∣∣∣
s=sk

: ∂E(x)
∂x

∣∣∣
x=T (sk)

like [PBH15] did. There-

fore, we actually use an inexact Newton’s method to solve each
quadratic sub-problem.

Algorithm 1 SQP framework

Require: xk

sk = T −1(xk)
while

∥∥b+∇sC⊤
Aλ

∥∥
2 ̸= 0 do (loop of Newton iteration)

Evaluate Ak, bk, ∇sCk
A

∆s, λ = active set( Ak, bk, ∇sCk
A)

α = line search (sk, ∆s, λ)
sk+1 = sk +α∆s

end while

The QP problem in Eq. 12 leads to a KKT system:[
A ∇sC⊤

A
∇sCA 0

][
∆s
λ

]
=

[
b

−CA(T (sk))

]
. (13)

By Schur Complement method, λ is solved first and then ∆s:{ (
∇sCAA−1∇sC⊤

A

)
λ = CA−∇sCAA−1b,

A∆s = b−∇sC⊤
Aλ.

(14)

As RedMax [WWB∗19], we use preconditioned conjugate gradient
(PCG) method to solve the equations for A. The number of those
equations is the number of rows in ∇sCA plus 2 in total and brings
huge computational cost. Notice that the cost of solving a linear
system by PCG is strongly related to the matrix-vector multiplica-
tion and its preconditioner, we fully exploit the structure of A to
make the complexity of both kinds of operations in O(n) time and
accelerate the convergence.

3.2. Matrix-Vector multiplication in O(n) time
PCG involves frequent matrix-vector multiply operations for the
matrix A = J⊤HJ. We show that multiplying H,J,J⊤,A with a
vector can all be implemented in O(n) time under our compact
representation.

For simplicity, we use such notations:

• I : a block lower triangular matrix whose block elements are I,

• I : a block upper triangular matrix whose block elements are I,

• : a block diagonal matrix ignoring its specific value,

• : a block tridiagonal matrix ignoring its specific value.

The pattern of H: For rod simulation, the system matrix before
applying the transformation T has a simple band structure with
such (p,q) ordering:

H =

[
Hp 0
0 Hq

]
=

[
1

∆t2 Mp 0
0 1

∆t2 Mq +Kq

]
=

[
0

0

]
, (15)

where Hp = ∂
2E

∂p2 =
∂

2Tp
∂p2 = Mp/∆t2 and Hq = ∂

2E
∂q2 =

∂
2Tq(q)
∂q2 +

∂
2V (q)
∂q2 = Mq/∆t2+Kq. Under this simple band structure, the O(n)

time complexity of the matrix-vector multiplication for H is natu-
rally guaranteed.

The Pattern of J: We split the Jacobian matrix J into two blocks:

J =

[
Jp,s
Jq,s

]
. (16)

Jq,s has a pattern as below due to s = [p⊤
c ,ω⊤]⊤:

Jq,s =
[

∂q
∂pc

∂q
∂ω

]
=

[
0

]
. (17)

The pattern of Jp,s is relatively complicated as below:

Jp,s =


I
I J1

p,s
0

...
...

. . .
I J1

p,s · · · Jn
p,s



=


I
I I 0
...

...
. . .

I I · · · I




I
J1

p,s
. . .

Jn
p,s


︸ ︷︷ ︸

Diag({Ji
p,s})

=
[

I ·
]
.

(18)

Obviously, we can multiply Jq,s with a vector in O(n) time. Fur-
thermore, the time complexity of the matrix-vector multiplication
for Jp,s is the same as I , which is identical to computing the pre-
fix sum of the vector in O(n) time [HSO07]. Therefore, we can
achieve the matrix-vector multiplication for J in O(n) time. J⊤

shares the same property.

Finally, we can multiply A with a vector in O(n) time:

A = J⊤HJ =

[
· I

[
0
]]

︸ ︷︷ ︸
J⊤

[
0

0

]
︸ ︷︷ ︸

H

[
I ·[

0
] ]

︸ ︷︷ ︸
J

. (19)

3.3. Hybrid preconditioner
A suitable preconditioner is important for performance. Re-
searchers usually use the diagonal, or block-diagonal part of A
to construct the preconditioner considering its simplicity and low
cost for construction. For instance, RedMax [WWB∗19] adopts the
block-diagonal strategy to construct their preconditioner. However,
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Figure 3: Comparison between our preconditioner and other pre-
conditioners. We simulate a helix under gravity with different pre-
conditioners in 100 time steps and use 5 Newton iterations at most
per time step. The construction cost of our preconditioner is slightly
higher (a). However, solving the linear system using our precondi-
tioner needs much less PCG iterations (b) and time (c) than using
the diagonal or the block-diagonal preconditioners. As the rod is
refined with more segments, the advantage of our method is more
prominent.

we notice that such a common way is not satisfactory, and the fol-
lowing preconditioner usually leads to much better convergence.

Specially, A in our chain structure can be expressed as below:

A = J⊤HJ =
[
J⊤p,s J⊤q,s

][Hp 0
0 Hq

][
Jp,s
Jq,s

]
= J⊤p,sHpJp,s +J⊤q,sHqJq,s.

(20)

After further analysis, we note that A has a structure as below:

J⊤q,sHqJq,s =

[
0 0
0 J⊤q,ωHqJq,ω

]
=

[
0 0
0

]
,

J⊤p,sHpJp,s = Diag{Ji
p,s}⊤ · I ·Hp · I︸ ︷︷ ︸

H̄p

·Diag{Ji
p,s},

(21)

where Jq,s =
[
0,Jq,ω

]
and Jp,s =

[
I,Jp,ω

]
.

Clearly, J⊤q,ωHqJq,ω in Eq. 21 has a block-tridiagonal structure.
Inspired by this property, we select to extract the intact block-
tridiagonal part of J⊤q,sHqJq,s and the diagonal part of J⊤p,sHpJp,s to

construct our hybrid preconditioner P, for keeping the information
after the transformation T as much as possible:

P =

(
blk-diag

(
J⊤p,sHpJp,s

)
+

[
0 0
0J⊤q,ωHqJq,ω

])
. (22)

Such a hybrid preconditioner has some excellent properties: it is al-
ways a symmetric positive-definite matrix, constructing it and ap-
plying it are both in O(n) time.

The proof of positive definiteness: Without loss of generality, we
suppose that the system matrix H is symmetric positive definitive.
Otherwise, we can add αI to ensure its positive definiteness. Obvi-
ously, its diagonal blocks Hp and Hq are also positive definite.

Our preconditioner has the following block strucutre based on
Eq. 22:

P =

∑
n
i=0 hi 0

0

P22︷ ︸︸ ︷
blk-diag(J⊤p,ωHpJp,ω)+J⊤q,ωHqJq,ω

 . (23)

where hi is a diagonal matrix whose diagonal elements are all
greater than 0.

Obviously, the first diagonal block is positive definite, thus P is
positive definite iff P22 is positive definite.

According to Eq. 20, we point out that J⊤p,sHpJp,s and J⊤q,sHqJq,s
are both at least positive semi-definite, since:

∀v ̸= 0, v⊤J⊤∗ H∗ J∗v︸︷︷︸
y

= y⊤H∗y >= 0. (24)

Therefore, blk-diag
(

J⊤p,ωHpJp,ω
)

is still semi-definite. Next, we

show that J⊤q,ωHqJq,ω is positive definite.

The mapping Tq,ω from ω to q is a locally injective mapping, so
its Jacobian Jq,ω has full column rank. Considering the positive
definiteness of Hq, we can factorize it as LL⊤ and

rank(J⊤q,ωHqJq,ω) = rank(J⊤q,ωLL⊤Jq,ω)

= rank(L⊤Jq,ω)

= rank(Jq,ω) = dim(ω).

(25)

Thus, J⊤q,ωHqJq,ω is still positive definite.

So far, our preconditioner is positive definite:

P =

(
blk-diag

(
J⊤p,sHpJp,s

)
+

[
0 0
0 J⊤q,ωHqJq,ω

])

=



positive definite︷ ︸︸ ︷
n

∑
i=0

hi 0

0 blk-diag(J⊤p,ωHpJp,ω)︸ ︷︷ ︸
positive semi-definite

+ J⊤q,ωHqJq,ω︸ ︷︷ ︸
positive definite︸ ︷︷ ︸

positive definite


.

(26)
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Construction in O(n) time: Considering such a special [block di-
agonal matrix]-[block matrix]-[block diagonal matrix] multiplica-
tion:

A1
A2

. . .
An




B11 B12 · · · B1n
B21 B22 · · · B2n

...
...

. . .
...

Bn1 Bn2 · · · Bnn




C1
C2

. . .
Cn

 . (27)

The (i, j) block of the resulted matrix ABC is AiBi jC j. According
to this, we can construct its block-tridiagonal or block-diagonal part
in O(n) time clearly, assuming that three matrices A, B and C are
all prepared.

Back to our preconditioner, J⊤q,ωHqJq,ω naturally satisfies this
structure, since Jq,ω is a block diagonal matrix ( Eq. 17). J⊤p,sHpJp,s
is easily changed into such a structure in Eq. 27, using the associa-
tive law of multiplication shown in Eq. 21. Therefore, our concern
converts to how we can access to H̄p in linear time. Fortunately, Hp
is a lumped block diagonal matrix:

H̄p = I Hp I =


∑

n
i=1 hi ∑

n
i=2 hi ∑

n
i=3 hi · · · hn

∑
n
i=2 hi ∑

n
i=2 hi ∑

n
i=3 hi · · · hn

∑
n
i=3 hi ∑

n
i=3 hi ∑

n
i=3 hi · · · hn

...
...

...
. . .

...
hn hn hn · · · hn

 .

(28)
where hi is the i-th diagonal block of Hp. Thus, H̄p has only n dis-
tinct non-zero blocks, which can be computed in O(n) time, just
like the prefix sum. Conclusively, our preconditioner has only O(n)
non-zero blocks, and we can construct it explicitly using this obser-
vation for each block.

Solving in O(n) time: Since the preconditioner has the standard
block-tridiagonal structure, we use Thomas algorithm [Tho49] for
solving in O(n) time.

Although the construction of our preconditioner could be relatively
more complicated than the diagonal or block diagonal precondi-
tioner, this specially tailored preconditioner improves the speed at
least one order compared with the diagonal or block diagonal strat-
egy as shown in Fig. 3. We also compare our PCG method with
constructing A−1 by matrix factorization: the dense matrix struc-
ture causes more time consumption in both the matrix factorization
(Fig. 3a) stage and the matrix-vector multiplication (Fig. 3c) stage.

Furthermore, our PCG solver has nearly linear complexity. Under
the setting of Fig. 3, the average time of solving a linear system
increases almost linearly as the number of segments increases (see
Fig. 4). Therefore, our method is well scalable with respect to the
number of segments. It should be noticed that the linear complexity
does not apply to the whole time step because the collision con-
straints in Eq. 32 are nonlinear under our reduced representation
and the number of Newton iterations to resolve the collisions may
be different from frame to frame.

According to Eq. 20, A is the sum of two parts. As Young’s
modulus increases, J⊤q,sHqJq,s would be dominant increasingly.
Therefore, in this situation, our preconditioner that uses the intact
J⊤q,sHqJq,s could approximate A better, which leads to a better con-
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Figure 4: Average time cost of each time-step. We simulate the
helix under gravity in Fig. 6. Our PCG solves the linear systems
using nearly fixed number of iterations. The time cost of each time-
step is nearly linear with respect to the number of segments.
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Figure 5: PCG iterations w.r.t Young’s modulus. The superior-
ity of our preconditioner is more obvious as Young’s modulus in-
creases.

vergence rate as shown in Fig. 5a, while the simple block-diagonal
preconditioner drops many large non-zero values in J⊤q,sHqJq,s and
leads to a poor convergence rate as shown in Fig. 5b.

4. Comparisons and Results
We test the performance of our method in various experiments.
All experiments in this section are performed on an AMD Core
Ryzen 7-3800X 3.9GHz CPU, with 32GB of memory. In all our
experiments, we terminate the Newton iteration (Alg. 1) if ∥b +
∇sC⊤

Aλ∥2 < 1e-5 or it reaches 5 iterations if there is no special
declaration. In our experiments, it usually terminates at the former
condition. For each linear system solving, we terminate the PCG
iterations when the L2 norm of the residual is smaller than 1e-7.
Tab. 1 summarizes the statistics and performances of our experi-

ments.

4.1. Comparisons
We compare our method with several existing methods, includ-
ing the penalty method, the direct KKT method in Cartesian
coordinates, an existing compact representation of the Cosserat
rod [BAC∗06,Ber09] and a potential compact representation based
on RedMax [WWB∗19]. To measure the violation of different con-

straints, we define ∑
n−2
i=0 ∥pi+1−pi∥

∑
n−1
i=1 li

− 1 as the metric to measure the

violation of inextensibility constraints. For measuring the violation
of alignment constraints, we define ∑

n−2
i=0

∥∥∥ pi+1−pi
∥pi+1−pi∥ −d(qi)

∥∥∥ as
the metric.
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Penalty-1e9
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Figure 6: The helix under gravity. We simulate the helix which is
composed of 200 segments and use five Newton iterations at most
per time step.

4.1.1. Comparison with the penalty method
For the experiments about the penalty method, we replace the en-
ergy term E(T (s)) by E(x) including the penalty terms about inex-
tensibility and alignment constraints, and simulate the helix under
gravity (Fig. 6). The weights of these two terms are the same. In
each time step, this penalty method solves an unconstrained opti-
mization problem about E(x).

In the first experiment, both methods run 5 Newton iterations. As
shown in Fig. 7a and Fig. 7b, it is hard for the penalty method to
satisfy the inextensibility and alignment constraints in a few itera-
tions. In other words, the accuracy of the penalty method could be
poor. For instance, the inextensible rod could be seriously stretched
if the weight is not large enough. However, as shown in next exper-
iment, using large weight may bring artifacts in dynamics under a
limited number of Newton iterations.
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Figure 7: Violation of constraints in the penalty method. The
penalty method can not exactly satisfy the inextensibility (a) and
alignment constraints (b), and may bring large violations if the
weight is not large enough. Note that the violations at frame 0 are
all zero for all methods, and we plot these curves from frame 1.

In the second experiment (Fig. 8), our method runs 5 Newton it-
erations while the penalty method with 1e9 as weight runs dif-
ferent Newton iterations. Here we calculate the kinetic energy by
summing of Ttrans =

1
2 ∑i miv2

i and Tq,i in Eq. 31. Fig. 8a shows
that, as the number of Newton iterations of the penalty method in-
creases, the period and phase of vibration get closer to our method.
In Fig. 8b, the penalty method using weight 1e9 with 5 iterations
is over-damped and does not vibrate at all. Indeed, as the weight
increases, such artifacts will be more serious. Part of the reason is
that, under larger weight, the optimization could be further away
from converging in the limited Newton iterations.

1e-6

1e-4

1e+0

0 80 160 240 320

1e-2 Our  iter  

Frame Index

Penalty 400 iter
Penalty 100 iterPenalty 5 iter. 

Penalty 200 iter

T
(a) The kinetic energy.

-0.3
0 80 160 240 320

Our 5 iter  

Frame Index

Penalty 400 iterPenalty 200 iter

Penalty 100 iterPenalt 5 iter
y-

of
fs

et
 (m

)

-0.1

0.0

-0.2

(b) The y-offset of the free end node.

Figure 8: Numerical damping of the penalty method
(weight=1e9) using different number of iterations. Larger
weight introduces larger numerical damping and needs more
Newton iterations to alleviate the artifacts. Note that kinetic
energies at frame 0 are all zero, and we plot the kinetic energy
from frame 1 in (a).

In the third experiment, we compare the performance of our method
with the penalty method on the first frame of the scenario in Fig. 6.
To be fair, we run both methods to converge (∥b+∇sC⊤

Aλ∥2 <
1e-5 for our method, and ∥∂E(x)/∂x∥2 < 1e-5 for the penalty
method) without the restriction of iteration counts. As shown in
Fig. 9, our method just needs a small number of iterations and con-
verges quickly while the penalty method needs increasing time to
converge as the penalty weight increases. Note that using a smaller
penalty weight could reduce the time cost for convergence but in-
troduce a larger violation of intrinsic constraints.

4.1.2. Comparison with direct KKT method
Directly solving the KKT system has no numerical damping ar-
tifacts but causes large computational cost, as shown in Fig. 6
and Fig. 10a. More importantly, solving the KKT system can not
exactly satisfy the inextensibility and alignment constraints, es-
pecially when the Newton iterations are inadequate as shown in
Fig. 10b and Fig. 10c. In contrast, our compact representation of
Cosserat rod satisfies the constraints in Eqs. 1 to 3 naturally and
we would not waste any computational cost to satisfy them. The

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Chongyao Zhao et al. / Efficient and Stable Simulation of Inextensible Cosserat Rods by a Compact Representation

-5.60E-01

-5.35E-01

-5.10E-01

-4.85E-01

-4.60E-01

0 0.09 0.18 0.27 0.36 0.450 0.09 0.18 0.27 0.36
Cost (s)

-0.560

E
(x

)

-0.510

-0.485

-0.460

-0.535

Penalty weight = 1e9

Penalty weight = 1e2

0.45

Our method

(a) E in time.

penalty-1e9

penalty-1e2

ours

0 10 20 30 40
Number of Iterations

-0.560

E
(x

)

-0.510

-0.485

-0.460

-0.535

Penalty weight = 1e9

Penalty weight = 1e2

50

Our method

(b) E in number of iterations.

Figure 9: Performance comparison between our method and the
penalty method. To converge, the penalty method with large weight
needs more iterations and higher time cost than our method.

method in [DKWB18] also includes a KKT solver, but it alter-
nates the KKT solver with the nonlinear Gauss-Seidel solver in
each Newton step. The KKT solver is used to enforce the inexten-
sibility constraints accompanied with bending and twisting forces,
while the nonlinear Gauss-Seidel solver is used for loop-closing
constraints and collision constraints. It also suffers from the prob-
lem of the violation issue when the Newton iterations are inade-
quate.
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Figure 10: Comparison between our method and the direct KKT
method in Cartesian coordinates. We simulate helix under gravity
as shown in Fig. 6. Our method not only spends less time than con-
structing KKT system and solving it in Cartesian coordinates (a)
but also satisfies all the nonlinear intrinsic constraints (see (b) and
(c)).

4.1.3. Comparison with Super-Helices
The same as our chain representation, Super-Helices [BAC∗06] can
simulate rods exactly satisfying the constraints in Eqs. 1 to 3 by
constructing a reduced-coordinate and [Ber09] improved its per-
formance by introducing a linear-time solver. We note that different
from our piecewise-linear-segment-based representation, Super-
Helices uses a high-order-element-based representation to model
the curved shape of a rod with fewer DOFs. This strategy is suit-
able when the simulated scene leads to smoothed deformation, but
when complicated contact happens, the expressing ability of this
curved element would decrease and more DOFs would be neces-
sary to introduce.

Additionally, their method is not as unconditionally stable as our
implicit time stepping method [Ber09], since the explicit compu-
tation of κ̈Q restricts that the time step has to be relatively small
to suppress the stability issue with regard to the number of ele-
ments: a rod composed of one curved element can be simulated by
∆t = 35ms at most, and a rod composed of 40 curved elements
can only be simulated at about ∆t = 4ms. However, we simulate
a similar scene on their benchmarks (see Fig. 11) and get stable
simulation results using 200 segments and 250ms as the time step
because of our stable implicit time stepping.

Figure 11: Dragging the root of a rod. We simulate the rod us-
ing 200 segments, with 1m as reference length, 1kg/m3 as density,
0.03m as radius, 1MPa as Young’s modulus, 1MPa as shear mod-
ulus, and ∆t = 250ms. We move two vertices on the top of the rod
in a sine wave and the displacement of the top two vertices can be
analytically expressed as φsin(2π f t). We set f = 1 and φ = 0.5m,
which is the half of the reference length of the rod.

To compare the performance with Super-Helices, we get simi-
lar results to them with better performance in a scene similar to
Fig. 11 (E = 0.2MPa,G = 0.1MPa,r = 0.03m,ρ = 1kg/m3, 20
segments): Super-Helices performed at 54fps with about 8ms as
the time step in their paper, while our method performs at 344fps
with 30ms as the time step. Our method gains 3.43 times accelera-
tion, by setting the number of threads as one and only considering
the clocks of the CPU (their CPU is 2.1GHz while ours is 3.9GHz),
and ignoring the further benefit from our supported larger time step
in this comparison.

4.1.4. Comparison with RedMax
The recently developed RedMax [WWB∗19] method can effi-
ciently simulate articulated rigid bodies, which can also be ex-
tended to simulate an inextensible rod. To compare with this com-
petitive idea, we extend RedMax to simulate the Kirchhoff rod in
App. C. Roughly speaking, we introduce the spherical joints to
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describe the change of the rotation field along the rod. Similar to
Super-Helices, it makes the Jacobian and mass matrix more com-
plicated. Besides, RedMax firstly applies coordinate transformation
and then temporal discretization while our method is in the reversed
order. Therefore, RedMax ignores more implicit forces than us, and
thus brings the stability issue. To illustrate it, we simulate the same
scenario as Fig. 6 by the extended RexMax and estimate its max
time-step size without breaking the visual stability by the bisection
method. As shown in Fig. 12, it becomes less stable as gravitational
acceleration increases, and our method can simulate the rod stably
under a larger time step.
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(a) Estimated max time-step size for the extended RedMax. The orange line
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(b) The helix under gravity by our method and extended RedMax.

Figure 12: The stability comparison with extended RedMax. We
use the bisection method to estimate the maximal time-step of the
stable simulation using RedMax. For each g, the last trial of the
bisection gives an interval of time-step size (a) whose begin (pur-
ple curve) and end (orange curve) associate with a stable and an
unstable simulation respectively. RedMax becomes more and more
prone to instability as gravitational acceleration increases. In (b),
we exhibit the simulation results of the first sample points of the
curves in (a). Our method can simulate under a much larger time-
step.

4.2. More results
In addition to the results shown in the comparisons, we further
demonstrate the capacity of our method in some complex scenes.

Strand through springs. A rod (E = 20MPa,G = 20MPa,r =
0.03m,ρ = 0.1kg/m3, 30 segments) with one end fixed and an-
other end constrained in a sliding chute passes through two springs
(E = 2MPa,G = 2MPa,r = 0.03m,ρ = 0.1kg/m3, 150 segments
for each spring) as shown in Fig. 14. The rod and the two springs
are all simulated as inextensible Cosserat rods by our method with
the time step 0.003s. Hanging a heavy object in the middle, the
two springs slide towards each other. Each frame involves about 16
collision contacts and is simulated at about 20fps.

200N

200N 20000N

20000N

Figure 13: Knotting under forces with different magnitudes. We
can simulate tighter knot using larger stretching force.

Knotting. As shown in Fig. 15, starting from a given knot structure
with a stretching force (200N), our method can simulate the knot to
be tight as time goes on. When the knot is tight, it withstands large
tension along the centerline. Due to our compact representation,
the rod (E = 20MPa,G = 20MPa,r = 0.03m,ρ = 0.1kg/m3, 100
segments) maintains the inextensibility perfectly. Our SQP frame-
work with the active set method handles the self-collision well with
25fps, when the time step is 0.003s . After the minimal knot forms
in Fig. 15, we continue to increase the stretching force to 20000N,
and the knot becomes much tighter as shown in Fig. 13.

Plectoneme formation. We can simulate the plectoneme forma-
tion of a Kirchhoff rod (E = 1000MPa,G = 100000MPa,r =
0.003m,ρ = 200kg/m3, 50 segments), which is a typical phe-
nomena where the twisting energy is transformed into the bend-
ing energy (Fig. 16). The two ends of the rod are stretched in the
x-direction (1N), and are only allowed to move freely in the x-
direction. When twisting (10rad/s) the two ends, the rod starts to
writhe and form plectoneme.

Dropping a rod on three cylinders. As shown in Fig. 17, a rod
(E = 1MPa,G = 0.1MPa,r = 0.03m,ρ = 0.5kg/m3, 200 seg-
ments) is dropped on three cylinders. Because our method intro-
duces less numerical damping, the rod bounces for a time before
lying on the cylinders.

5. Conclusions, Limitations and Future Work
In this paper, we introduce a new representation of Cosserat rods
which can perfectly satisfy the inextensibility, unit quaternions and
alignment constraints at the same time. Based on this representa-
tion, we simulate the Cosserat rod under the SQP framework and
make two further technical improvements for better performance:
firstly we point out that the frequent matrix-vector multiplication
can be implemented in O(n) time under our chain representation
and then we construct a specific hybrid preconditioner in O(n)
time. As a result, our method gains one or two orders of acceler-
ation compared with a block-diagonal preconditioner and exactly
satisfies the nonlinear constraints, under large time steps and in
complex scenes.

One limitation of our method is that, as we stated in Fig. 5, the
hybrid preconditioner works well when J⊤q,sHqJq,s dominates A
and as its influence reduces, the superiority of our hybrid precon-
ditioner decreases, where we need to increase PCG iterations to
converge. Another limitation of our method is that we focus on the
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Figure #vert. Avg. # of Avg. # of Avg. cost (ms) of Avg. cost (ms) of Avg. cost (ms) of Avg. total cost
collision pairs KKT systems grad. & Hes. eval. precomputation solving (ms)

Fig. 6 201 0 1 2.22 0.264 1.333 5.917
Fig. 14 333 16 7 4.421 0.947 40 52.69
Fig. 15 100 15 8 2.037 0.287 38 43
Fig. 16 51 8 7 2.392 0.375 13.089 20.160
Fig. 17 201 46 6 1.5613 1.56 12.172 36.888
Fig. 11 21 0 0 0.561 0.048 1.386 2.843

Table 1: Statistics and performances. This table lists the average number of collision pairs, the average number of KKT systems to be solved
and the average time cost spent in each time step on the experiments in Section 4.1.

Figure 14: Strand through springs. Two springs slide and collide with each other. Abundant collisions happen during this process and our
method can handle it well.

Figure 15: Knotting. Our method reproduces the knotting process while preserving the inextensibility property no matter how much the force
is. Here we use different colors to distinguish the different sides of the rod surface for better visualization.

Figure 16: Plectoneme formation. Plectoneme formation demonstrates the energy transformation from twisting energy to bending energy.
During this process, two ends of the rod move only freely in the x-direction.

Figure 17: Dropping a rod on three cylinders. This demo shows that our method has the ability to handle contacts with external obstacles.
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non-looped Cosserat rod structure and our method needs to be fur-
ther extended into the Cosserat-net structure or multi-branch struc-
ture [ST09,DKWB18] and we leave it as future work to process this
limitation in this paper. Looking into the future, we also would like
to incorporate the adaptive discretization [WCU∗20, SBRBO20]
into our method for better capturing complex behaviors with sharp
contacts. Besides, we use discrete collision detection only at the be-
ginning of each SQP solving to collect proximity pairs. This strat-
egy may miss collisions between time steps and collisions between
internal Newton steps. This may bring passing-through errors or in-
tersections. Now we use relatively small time steps to alleviate this
issue. A better way could be incorporating the continuous strat-
egy [OTSG09,SS15,LFS∗20,WFS∗21,YSC21]. Finally, we would
like to investigate more efficient solvers or parallelize our method
on GPU(s) for better performance.
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Appendix A: Energy Terms
These terms are derived in [ST07]. We briefly introduce them here.

The discrete bending and twisting potential energy is computed as

Vi (q) =
1
2

li
3

∑
k=1

Kkk

(
2

||qi||2
(Bk(qi +qi+1))

⊤ qi+1 −qi

li + li+1
− εk

)2

,

(29)
where the diagonal stiffness K has entries of K11 = K22 = Eπr2/4
and K33 = Gπr2/2, where E and G are stiffness modulus which
encodes the bending and torsional resistance respectively. εk is the
natural bending and torsion of the rod based on its geometry at
the rest shape. Bk ∈ R4×4 is the constant skew-symmetric ma-
trix [ST07].

The kinetic energy is composed of translational one Tp(p) and ro-
tational one Tq(q). Tp (p) represents the incremental translational
kinetic energy under the implicit Euler time discretization:

Tp (p) =
1
2
∥p−pt − ṗt∆t∥2

M/∆t2 , (30)

where M is the lumped mass matrix, ∆t is the time step, pt and ṗt
are the position and velocity of vertices at the last time step respec-
tively. For a rod with cross-section radius r and material density ρ,
the discrete rotational kinetic energy per segment ei is calculated as
below:

Tq,i (q) =
1
8

li
3

∑
k=1

Jkk

(
(Bk(qi +qi+1))

⊤(q̇i + q̇i+1)
)2

, (31)

where the three entries of diagonal inertia tensor are J11 = J22 =
ρπr2/4 and J33 = ρπr2/2 respectively.

Appendix B: Active Set Method for Collisions
The inequality constraints CI mainly stand for collision constraints
to avoid intersections. Following [BFA02], the vertex-triangle con-
straints and the edge-edge constraints can be written as below:{

(pa −wipi −w jp j −wkpk) ·n−δ ≥ 0,(
(wipi +(1−wi)pi+1)− (w jp j +(1−w j)p j+1)

)
·n−δ ≥ 0.

(32)
Using a classical active set method (Alg. 2), the active constraints
will be inserted into CA and processed as equality constraints. The
non-active ones will be simply deleted.

Appendix C: Extended RedMax for Kirchhoff Rod Simulation
Kirchhoff rod describes a rod with no stretch and shear deforma-
tion, so the methodology for articulated rigid body simulation is

Algorithm 2 active set

Require: sk

get the current active set A at xk = T
(

sk
)

while true do
Solve Eq (13) and get ∆s, λ

if ∇sCI(s+∆s)−dI < 0 then (In feasible Domain)
if ∥λ∥−∞ > 0 then (all active constraints are tight (LCP))

sk+1 = sk +∆s
break

else(some constraints are loose)
delete loose constriant (λi < 0) from active set A

end if
else(Not in feasible Domain, backtrack)

β = min{ dA,i−∇sC⊤
A,i∆xk

∇sC⊤
A,i∆s }

sk = sk +β∆s
add the tightest constraints to A

end if
end while
∆s = sk+1 − sk

potentially suitable to approximate it. To achieve this, we only need
to use the spherical joints and use its DOFs to derive the potential
energy for Kirchhoff model. We denote the DOFs of spherical joint
by Q and express the change of material frame by exp(Q).

Similar to Super-Helices, we discretize κ by n piecewise-constant
basis functions. We set the material coordinates of joints (points) as
ui ∈ [u0,un−1] where u0 = 0 and un−1 = L, then

κ(u) = κ j,
u j−1 +u j

2
≤ u ≤

u j +u j+1

2
, (33)

where j = 1,2, · · · ,n−2. The span of the basis is the Voronoi space
of each joint.

Now we need to calculate κ using Q. By the definition of the
curvature, given the change of rotation, exp(Q), the curvature
κ =

log(exp(Q))
l = Q

l . Since this change only happens at the joint,
l = 0 makes κ infinite. We average this change of rotation to the
Voronoi space of the joint so that we can get the curvature of the
joint κ j by κ j =

Q
l j

where l j =
u j+1−u j−1

2 . Now we can model the
potential energy by

U =
1
2

∫ L

0
∥κ(u)− ε∥2

K du, (34)

where ε and K are the same as Eq. 29. So the discrete energy is

U =
1
2 ∑

j
l j

∥∥∥∥Q j

l j
− ε

∥∥∥∥2

(K)

, (35)

and the derivatives of it are

∂U
∂Q j

= (K)

(
Q j

l j
− ε

)
,

∂
2U

∂Q2
j
=

(K)

l j
. (36)
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