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Fig. 1. Numerical coarsening of nonlinear materials. We introduce a new approach for numerically capturing the behavior of inhomogeneous and

nonlinear materials on coarse grids. For two composite models (let: plane with downwards forces exerted on wings; right: vase being twisted) made of two

diferent compressible neo-Hookean materials discretized on a fine mesh (Poisson ratio: 0.45; Young’s moduli: 1e3 and 5e4; volume rendering insets illustrate

the spatial distribution of their composite material), our coarsened model with eight times less elements (red) perfectly reproduces the original behavior, while

a regular FEM simulation using trilinear shape functions (green) on the same coarse mesh leads to drastic overstifening.

In this paper, an eicient and scalable approach for simulating inhomoge-

neous and non-linear elastic objects is introduced. Our numerical coarsening

approach consists in optimizing non-conforming and matrix-valued shape

functions to allow for predictive simulation of heterogeneous materials with

non-linear constitutive laws even on coarse grids, thus saving orders of

magnitude in computational time compared to traditional inite element

computations. The set of local shape functions over coarse elements is care-

fully tailored in a preprocessing step to balance geometric continuity and

local material stifness. In particular, we do not impose continuity of our

material-aware shape functions between neighboring elements to signii-

cantly reduce the ictitious numerical stifness that conforming bases induce;

however, we enforce crucial geometric and physical properties such as par-

tition of unity and exact reproduction of representative ine displacements

to eschew the use of discontinuous Galerkin methods. We demonstrate that

we can simulate, with no parameter tuning, inhomogeneous and non-linear

materials signiicantly better than previous approaches that traditionally try

to homogenize the constitutive model instead.
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1 INTRODUCTION

Eicacy in simulating complex deformable models is a long standing

goal in computer animation. As the demand for ever larger and more

complex simulation increases, so does the need for more elaborate

numerical methods whose computational costs grows only slowly

with the structural complexity of the object being simulated. Tradi-

tional animation methods can only capture the proper behavior of a

physical object if one uses a mesh ine enough to resolve the small-

scale heterogeneities, leading to prohibitive simulation time when

the ine scales are geometrically complex or have a drastically difer-

ent stifness (such as veinal structures in an organ or microstructures

in a metamaterial). Simply ignoring these ine scales dramatically

afects the overall dynamics of the object: a coarse simulation can

fail to capture even the simplest deformation, at times rendering

the object dramatically more rigid than in realityÐan archetypi-

cal example being the issue of locking in inite element modeling,

where incompressiblity is at odds with the conforming constraints

of low-order inite elements. As visual and manufacturing idelity

calls for an increasingly widespread use of non-linear geometric

models and non-linear constitutive laws, the design of numerical

algorithms that combine eiciency and scalability is increasingly

pressing in graphics and computational physics.

Over the years, diferent strategies have been devised to address

this enduring problem in simulation. A irst family of eforts uses

adaptive solvers to counteract the spurious numerical rigidity and

obvious visual artifacts that coarse elements and low-order łshapež
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(or łbasisž) functions typically generate [Debunne et al. 2001; Grin-

spun et al. 2002; Narain et al. 2012]. Reinements (in the number of

elements and/or their polynomial orders) based on the local amount

of deformation are used to distribute degrees of freedom (DOFs)

where they are most needed. However, adaptive methods are often

diicult to implement without exhibiting popping artifacts, and

generally not very eicient at capturing the correct behavior of het-

erogeneous materials at low computational cost. A second family

of approaches focuses on model reduction instead, where the state

space dimension is kept small by limiting the space of possible defor-

mations, typically through modal analysis [Barbič and James 2005;

Krysl et al. 2001; Li et al. 2014; Pentland and Williams 1989]. Relying

on sparser approximations of the deformation space of a particular

homogeneous physical model can be very eicient when combined

with cubature schemes. However, model-reduced approaches typ-

ically introduce a mismatch between geometric and deformation

DOFs obfuscating the treatment of contacts and collisions. They

also sufer from a crippling high runtime complexity. More recently,

the concept of łnumerical coarseningž has shown great promise. As

numerical outgrowth of homogenization theory [Bensoussan et al.

1978], coarsening refers to the idea that a complex geometric model

is embedded in a coarse mesh which is assigned łcoarsenedž (i.e.,

physically averaged) material properties to best match the behav-

ior of the original object [Kharevych et al. 2009; Nesme et al. 2009;

Panetta et al. 2015; Torres et al. 2016]. Coarsening has been proposed

through global (mesh-wide) or local (element-wide) optimization

such that simulation at runtime eiciently captures the correct dy-

namics even on coarse grids. However, methods of this class are

mostly limited to linear constitutive models, even if a recent exten-

sion to non-linear models has demonstrated good behavior through

stifness scaling for homogeneous materials [Chen et al. 2017].

In this paper, we propose a new approach to numerical coarsen-

ing which captures the ine dynamics of an inhomogeneous and

non-linear elastic object using only a coarse discretization of its

geometry. Instead of trying to homogenize the composite material

present inside each coarse element, we achieve numerical coarsen-

ing through the computation of material-aware basis functions over

the coarse computational grid.We show that allowing discontinuous

and matrix-based shape functions while forcing them to properly

capture a set of key continuous deformations signiicantly reduces

the important issue of inter-element stifness, i.e., the spurious efects

of conforming coarse elements on the resulting dynamics. Unlike

previous approaches, we are able to capture the non-linear stress-

strain behavior of complex materials, with no parameter tuning.

1.1 Related Work

We irst review relevant work in inite element modeling and nu-

merical coarsening to help us motivate our simulation approach

and contrast it with current techniques.

Finite-element based simulation. Real-life objects are often highly

heterogeneous and best modeled by non-linear elastic models. Their

accurate simulation can be achieved using inite element modeling

(FEM) on tetrahedral or hexahedral elements, but at high computa-

tional cost as both geometric and material non-linearities require

dense discretization. Interpolation errors are also known to arise if

badly-formed shape functions are employed; in particular, local gra-

dients of these functions impose stringent requirements on simpli-

cial elements for linear inite elements [Shewchuk 2002] and necessi-

tate Jacobian-driven optimization for higher-order meshes [Johnen

et al. 2013]. A number of approximation issues referred to as locking

(parasitic shearing, incompressibility locking, membrane locking)

may appear in FEM as well, introducing spurious over-stifening

when coarse elements are used [Prathap 1993]. While local re-

inements or degree elevation are typical ways to resolve them,

a whole family of methods based on łdiscontinuous Galerkin ele-

mentsž have been proposed [Cockburn et al. 2011]: by removing

the constraint that elements (and thus, shape functions) must be

conforming to their neighbors, the space of possible deformations

is greatly increasedÐin fact, excessively so: it may create aphysi-

cal deformation, therefore artiicial jump penalty terms have to be

added to prevent large discontinuities in practice. Non-conforming

elements that just share mid-edge points have been proposed for

developable shells [English and Bridson 2008] instead, but their pos-

sible extension to 3D has not been validated yet. Note inally that

harmonic shape functions over polyhedral elements [Martin et al.

2008] were also proposed to simulate elasticity with a greater de-

formation space than traditional simplicial elements; however, this

approach is not well suited for inhomogeneous elastic deformation

because shape functions are not adapted to the material composi-

tion. Balancing numerical eiciency and simulation accuracy thus

remains an enduring diiculty of traditional inite elements, prevent-

ing important applications varying from realtime surgical training

to rapid prototyping of metamaterials.

Constitutive model homogenization. Inspired by homogenization

theory (which targets the efective averaging of solutions of equa-

tions with rapidly varying coeicients [Bensoussan et al. 1978]), a

irst set of numerical coarsening methods proposed to łupscalež the

heterogeneous elastic properties represented by a ine mesh into

anisotropic elastic properties of a coarse mesh that efectively cap-

tures the same constitutive model. Kharevych et al [Kharevych et al.

2009] compute a set of d(d+1)/2 harmonic displacements in dimen-

siond=2, 3 to capture how the inemesh behaves when linear forces

are applied to the boundary of the material; these representative

deformations of the objects are just enough to compute an efective

elasticity tensor for each coarse element, so that the potential en-

ergy of the coarse mesh exactly matches the integral of the potential

of the ine mesh within each coarse element. Only linear elastic

models can be coarsened though, limiting its use considerably (note

however that it was recently used to solve the inverse problem of mi-

crostructure optimization as well [Schumacher et al. 2015], enabling

the creation of metamaterials with prescribed bulk properties). Chen

et al. [2015] propose a data-driven extension of this potential energy

itting idea to non-linear materials where now a coarse constitutive

model is found through linear regression based on a set of deforma-

tion samples obtained from random forcing. However, each coarse

element is homogenized individually, disregarding the physical cou-

pling that neighboring elements induce. Moreover, results are highly

dependent on the training set and the tuning of the parameters of

the regression. While these model-itting methods do manage to

homogenize the potential energy of complex materials, capturing

ACM Trans. Graph., Vol. 37, No. 4, Article 120. Publication date: August 2018.



Numerical Coarsening using Discontinuous Shape Functions • 120:3

the correct dynamics would also require homogenizing the kinetic

energy by computing an efective mass matrix as well. In practice,

however, a coarse lumped mass matrix assembled from the ine

mesh is used as it introduces only minor inertial artifactsÐbut cali-

brating the frequency spectrum of homogenous materials through

simple rescaling of Young’s modulus [Chen et al. 2017] has shown

encouraging results towards full dynamics-aware coarsening.

Shape function optimization. Another approach for coarsening

consists in computing meaningful, łmaterial-awarež shape functions

in an oline preprocessing step: using tailored basis functions on the

coarse elements that closely reproduce the possible deformations of

a complex material instead of the traditional polynomial functions

signiicantly improves the accuracy of simulation. This idea was

articulated as a local constrained quadratic optimization per coarse

node in [Owhadi et al. 2014], while local eigenanalysis was intro-

duced in [Efendiev et al. 2011] to tailor better material-adapted shape

functions. However, the locality of the solves involved in these two

methods generate shape functions that do not even satisfy partition

of unity, making them not amenable to general elasticity. Nesme et

al. [2009] proposed the computation of a shape function and stif-

ness matrix per coarse element such that the deformation computed

using this single coarse element best its the deformations of the ine

mesh it represents. They used boundary vanishing conditions and

assumed the interpolation for 3D displacements to be independent

in each Cartesian coordinate. Torres et al. [Torres et al. 2014, 2016]

further extended this approach for arbitrary boundary conditions

through condensation, and proposed a discontinuous matrix-valued

mapping from coarse to ine grids derived from the stifness ma-

trix. Note that at runtime, these methods use a corotational-based

coarse simulation to improve their results by adding geometric non-

linearity: it makes the efective linear strain tensor more accurate for

large deformation by removing as much of the current local rotation

as possible. However, none can handle fully non-linear materials.

Multigrid solvers. While fundamentally diferent from numerical

coarsening which aims at inding a coarse solution without resort-

ing to computations on the original ine mesh, geometric multigrid

methods (GMG) use prolongation (and restriction) operators to

project a coarse solution onto a ine grid (and vice versa) in order to

accelerate computations. The accuracy of this mapping from coarse

to ine and ine to coarse is key in the eiciency of a solver; yet cur-

rently, most multigrid methods (e.g. [McAdams et al. 2011]) simply

construct prolongation operator through geometric interpolation

without much consideration of the equation they are solving: any

error in this mapping will get corrected based on subsequent com-

putations on the ine grid. Our coarsening work may thus be useful

for GMG as it provides an accurate inite-dimensional map between

various resolutions through a careful design of shape functions.

1.2 Contributions

Based on our review of previous works, a few comments are in order.

First, while it was recognized early on that an assembly of diferent

isotropic materials is in general anisotropic [Kharevych et al. 2009],

all methods so far have relied on scalar shape functions, instead of

embracing the unavoidable anisotropy by using general tensorial

shape functions to interpolate through linear transformations. Sec-

ond, current coarsening methods upscale each coarse element, but

do not address the negative (generally over-stifening) efects that

conforming (geometrically continuous) discretizations can induce.

In this paper, we show that coarsening via the construction of dis-

continuous and matrix-valued shape functions satisfying important

geometric and physical material-aware properties ofers a signii-

cantly more lexible and general approach to coarsening. From a

pair of regular grids representing respectively a ine and a coarse

geometric description of the elastic body, we devise a numerical pro-

cedure to turn the heterogeneous and non-linear elastic properties

of the ine mesh into a set of material-aware shape functions over

the coarse mesh to better capture the solution space of the ine mesh.

Our matrix-valued shape functions are expressed in individual coro-

tational frames, reminiscent of the frame-based approach of [Faure

et al. 2011; Gilles et al. 2011], to better capture the non-linearity

of a material on the coarse grid. Optimizing these shape functions

involves no heuristics or parameter tuning, but a simple constrained

quadratic programming problem which adapt these functions to

the material while keeping key properties such as partition of unity

and ininitesimal rotation invariance. The resulting shape functions

do not sufer from the ictitious numerical stifness of conforming

bases, and exactly reproduce a set of representative deformations of

the object. The coarsened dynamical system can then be deformed

with a computational complexity nearly proportional to the size of

the coarse mesh for any non-linear constitutive model, with a visual

accuracy decaying gracefully with the size of the coarse mesh.

2 DISCONTINUOUS, TENSORIAL SHAPE FUNCTIONS

We begin our exposition by deining the goals of numerical coars-

ening, and deriving the general form that our shape functions will

take to be suiciently expressive to capture complex deformation.

2.1 Elastic behavior

Given a deformable object occupying a d-dimensional spatial do-

main Ω ⊂ �d at rest, its deformation can be encoded via a dis-

placement ield u : Ω→�d . For a given external force ield (and

possibly some position constraints) the object will deform, giving

rise to a deformation ield over the reference (material) domain

Ω. Mathematically, the resulting displacement u∗ can be described

variationally: it is a constrained minimization (sometimes referred

to as a elastostatics problem), which deines u∗ as the deformation

leading to the minimum elastic potential energy subject to external

forces and constraints; i.e.,

u∗ = argmin
u

∫
Ω

Ψ(u)dX +

∫
Ω

⟨f ,u⟩ dX s. t. C(u) = 0 (1)

where Ψ is the elastic potential density of the object deined over

the undeformed shape Ω, f represents the external force ield, and

C encodes the deformation constraints (such as prescribed nodal

displacements for instance).

2.2 Fine vs. Coarsened Finite Element Modeling

Finding a deformation given external forces requires computations.

Let us describe how this would be done on a ine mesh, then how

this could be approximated on a coarsened mesh instead.

ACM Trans. Graph., Vol. 37, No. 4, Article 120. Publication date: August 2018.



120:4 • Jiong Chen, Hujun Bao∗, Tianyu Wang, Mathieu Desbrun, and Jin Huang∗

Fine shape functions. To numerically solve the problem given

by Eq. (1), Finite Element Modeling (FEM) proceeds by discretizing

the domain Ω into a ine mesh Ω
h with a set of nodesXh

i and a num-

ber of elements Ωh
e formed by these nodes. For each element Ωh

e , a

scalar shape function Nh
e,i : Ω→� per corner node Xi is deined as

well so that they sum to one (partition of unity) and Nh
e,i (X

h
j ) = δi j

(Lagrange property). Linear functions for tetrahedron meshes and

trilinear functions for regular grids are often selected for their sim-

plicity. With this setup, a continuous deformation u can be encoded

as one displacement uhi =u(X
h
i ) per node X

h
i , since the deformation

ield can be interpolated to the rest of the domain via:

∀X ∈ Ω
h
e , u(X ) =

∑
Xh
i ∈Ωh

e

Nh
e,i (X )uhi . (2)

Note that the discretization presented here is far from general: many

variants exist. However, this particular one is commonly used be-

cause it is very local (each node only has an inluence on its imme-

diate neighboring elements) and interpolating (due to the Lagrange

property). Moreover, the variational problem of Eq. (1) can now

be discretized and solved eiciently for a function u∗ in a inite

dimensional subspace parameterized by {uhi }i .

Coarsened shape functions. For the above FEM procedure to pro-

vide an accurate deformation, each mesh element should only de-

scribe a small and homogeneous part of the deformable object. As

a consequence, inding the deformation of an inhomogeneous ob-

ject with high contrast in material stifness and strong non-linear

stress-strain behavior requires an inordinate count of elements, pre-

cipitously increasing the computational cost involved in dealing

with such a ine mesh. Therefore, most numerical coarsening meth-

ods begin by reducing the spatial resolution, through a coarse mesh

Ω
H for which each element ΩH

e is an assembly of ine elements

from Ω
h , and where the nodes of ΩH are a subset of the ine nodes

of Ωh . We adopt the same strategy in our work: we assume that both

ine and coarse meshes are regular grids to make our explanations

(and the implementation) easier, but other spatial arrangements can

be used as well. For this coarse mesh to be able to resolve nearly

the same deformation at a fraction of the computational cost, we

need to optimize the shape functions NH
e,i : using the same trilinear

basis functions as on the ine grid would simply fail to capture the

complexity of the physical behavior of the deformable object (see

Figs. 1 and 18 for instance). Instead, one should use shape functions

such that their span covers the span of the ine basis functions, and

is expressive enough to reproduce the typical deformation of the

object at hand: only then can we hope that solving the variational

problem of Eq. (1) on the coarse grid is nearly equivalent to the

more computationally intensive solve on the ine grid.

For simplicity, we will omit the subscript e from now on: the

notation NH
i will be used instead of NH

e,i to refer to a basis function

associated to the node XH
i of a certain coarse element ΩH

e .

2.3 Piecewise-trilinear shape functions

In order to ofer enough lexibility compared to the ine grid, each

coarse shape function NH
i over a coarse element ΩH

e for a coarse

nodeXH
i ∈ΩH

e can be deined using the ine grid: the shape function

XH
i

Xh
jΩ

H
e

Nh
j (X )

Fig. 2. Piecewise bilinear shape functions. A 2D coarse element (let)

and its associated fine elements and fine vertices used to discretize its

shape functions (center). Each fine node is associated with a local basis

function (right, depicted via height field), which consists of piecewise bilinear

functions defined on its directly adjacent fine elements.

is discretized by values on the ine nodes Xh
j contained within this

coarse element, and interpolated via the ine shape functions Nh
j

(see the 2D illustration in Fig. 2). In other words, while the ine mesh

uses trilinear shape functions, a coarse shape function NH
i over the

element ΩH
e is now a piecewise-trilinear function deined as:

∀X ∈ Ω
H
e , NH

i (X ) =
∑

j
ni j N

h
j (X ), (3)

where the coeicients ni j are now degrees of freedom that can be

optimized at will, representing the coarse nodal basis NH
i sampled

on the ine nodes Xh
j ∈Ω

h
e .

2.4 Corotational matrix-valued shape functions

While piecewise-trilinear coarse shape functions ofer much added

degrees of freedom, they sufer a key limitation: when used to in-

terpolate a deformation from coarse values uHi on the coarse mesh,

the deformation ield will interpolate each coordinates of uHi inde-

pendently, since now Eq. (2) reads on the coarse mesh as:

∀X ∈ Ω
H
e , u(X ) =

∑
Xi ∈Ω

H
e

NH
i (X )uHi . (4)

This means that any displacement in the x-direction of a node value

uHi will only afect the x-coordinates of the reconstructed ieldÐa

very limiting interpolation of complex deformation.

Matrix-valued shape functions. Yet, typical elastic deformation

exhibits strong coupling between coordinates, for instance in ma-

terial with high Poisson ratio. We thus propose to turn the usual

scalar-valued shape functions intomatrix-valued shape functions:

NH
i : Ωe → �d×d ,

to best exploit the inevitably-anisotropic behavior of complex ob-

jects: our interpolation now involves general linear transformations

that couple dimensions and handle anisotropy naturally. This is eas-

ily done with our previously-introduced piecewise-trilinear setup

by now considering the degrees of freedom ni j to be d×d matrices

instead of scalar values.

Corotational formulation. The use of tensorial shape functions

comes with an immediate challenge, though. A tensor requires a

frame in which to express it as a matrix. The natural choice of a

ixed Cartesian frame is, alas, not appropriate since the interpolation

would no longer be rotation invariant: an added global rotation

would change the relative displacements within elements. This issue

is easily resolved by adding a notion of local frame, similar to what is

widely used in corotational methods. First, we estimate a local frame
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Re for each coarse element ΩH
e through a simple procedure: we

interpolate the current node displacements via simple trilinear shape

functions N i over the coarse element and evaluate the deformation

gradient ∇x =∇u + � at the center of the element; the frame Re is

then deined as the rotation matrix of the polar decomposition of ∇x .

The shape functions are then used in this local frame to interpolate

the deformation ield through:

u(X )=Re

[
X +

∑
i
NH
i (X )(RTe x

H
i − XH

i )
]
− X . (5)

When NH
i (X ) is linear precise (i.e.,

∑
i N

H
i (X )XH

i =X ∀X , which

holds for trilinear functions N i ), the above equation simpliies to

the classical corotational formulation used in linear elasticity anima-

tion [Müller and Gross 2004]. Our expression is thus a corotational

treatment of our generalized matrix-valued shape functions, allow-

ing us to enforce an artifact-free interpolation of deformation ields

within each element.

2.5 Discussion

Note that our construction of coarse shape functions uses a number

of DOFs stored on the ine grid to capture the complexity of the ine

structure with only a small amount of coarse nodes, as already pro-

posed in [Owhadi et al. 2014] for instance. However, our use of d×d

matrices for ni j instead of scalars uses 4 times more memory in 2D,

and 9 times more in 3D: we are thus, in a way, trading memory for

expressiveness. The resulting coarsened shape functions will, how-

ever, allow for simulations with similar or better visual results than

their less memory-consuming counterparts as we will demonstrate

in Sec. 4. Finally, this choice of extended shape functions creates a

possibly discontinuous deformation ield when coarse deformation

vectors are interpolated. We discuss next how to restrict this high

dimensional set of shape functions to guarantee that they ensure a

good balance between geometric continuity of the deformation and

local respect of material behavior.

3 DESIGN OF MATERIAL-AWARE SHAPE FUNCTIONS

While we introduced a new expression for coarsened shape func-

tions, not every function in this large allowable space is a valid

candidate for accurate simulation. In this section, we identify key

properties that shape functions should satisfy for a given inhomo-

geneous, non-linearly elastic material. We then propose an opti-

mization procedure to construct the actual shape functions. Special

attention is paid to balance geometric continuity and local stifness.

3.1 Geometric conditions

Basic geometric properties of shape functions need to be preserved

in our setting to avoid aphysical behavior.

Geometric invariance. If an object is simply translated or rotated,

its strain should not changed: it would introduce spurious artifacts

otherwise. In order to render our discretization translation invariant,

we enforce the following condition on each coarse element ΩH
e :∑

i
NH
i (X ) = �, (6)

where � is the d × d identity matrix. This is simply the traditional

partition of unity, extended to our tensor case. Similarly, if the object

rotates with a constant angular velocity ω, we need to enforce:

ω × X =
∑

i
NH
i (X ) ω × XH

i , ∀ω

to avoid spurious strains. Using the matrix notation [·]× deined

such that the cross product a × b is expressed as [b]× a, this reads:

[X ]× =
∑

i
NH
i (X ) [XH

i ]×. (7)

Node interpolation. We also enforce the traditional Lagrange prop-

erty, i.e., if δi j is the Kronecker delta function, we must have:

NH
i (XH

j ) = δi j � . (8)

This property guarantees that coarse nodes are properly interpo-

lated, which is crucial for point constraints or collision handling.

3.2 Physical conditions

Assuming they satisfy the basic geometric properties we just de-

scribed, our coarsened shape functions still have the diicult role

of having to reproduce as much as possible the physical behavior

captured by the ine grid. In order to render our shape functions

material-aware, we compute a set of representative deformations

and constrain our shape functions to reproduce those exactly. We

follow the approach of [Kharevych et al. 2009] that proposed to solve

d(d+1)/2 global łharmonicž displacements {hab }ab (a,b ∈ {1, ..,d})

on the ine grid to characterize how the ine mesh behaves under a

set of chosen boundary conditions, see Fig. 3. These deformations

are found by solving the following linearized elastostatic problems

with Neumann boundary conditions:

∇ · σ (hab ) = 0, inside Ω,

σ (hab ) · n =
1

2
(eae

T
b
+ ebe

T
a ) · n, on ∂Ω,

(9)

where σ is the stress tensor and ea refers to the unit vector in the

a-th coordinate direction. Note that these displacements are found

through a simple linear system even if the material constitutive

model is non-linear: we consider the Hessian of the potential energy

to be constant, and equal to Hess(Ψ) evaluated at u=0 (i.e., we use

the stifness matrix of the object at rest). Indeed, a full non-linear

solve would necessitate a choice of boundary traction magnitude,

whereas the linearized version of [Kharevych et al. 2009] needs

no such parameter: in linear elasticity, the deformation is simply

proportional to the traction magnitude. This amounts to a global

ininitesimal łprobingž of the object by a set of linear traction ields

on the boundary. As proposed in [Kharevych et al. 2009] (and more

recently in [Schumacher et al. 2015]), we ix the last six degrees

of freedom (translation and rotation) of Eq. (9) by ixing the zero-

th and irst moments, resulting in a unique solution. As we will

discuss later on, these deformation ields are enough to make our

shape functions material-aware, thus bypassing the need for a full

non-linear treatment.

Once the characteristic deformation ields hab are found, we

require our shape functions to precisely reconstruct them, that is,

hab (X ) =
∑

i
NH
i (X ) hab (X

H
i ). (10)

Note that this condition imposes 6 constraints per coarse element in

3D (3 in 2D). Our shape functions will then accurately represent any

deformation that is a linear combination of harmonic displacements.
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Moreover, since exact reproduction of representative displacements

is guaranteed by construction, it induces a weak enforcement of

geometric continuity of the coarsened shape functions: possible dis-

continuities introduced by our use of local frames are suppressed

on a series of characteristic deformations, without the non-physical

penalty terms often used in Discontinuous Galerkin methods; a

deformation will exhibit discontinuity only if it is not in the span of

our harmonic displacements.

3.3 Numerical conditioning

An important measure of numerical conditioning of a shape func-

tion is through the norm of its gradient: an element is badly shaped

if its basis functions are not able to capture local gradients prop-

erly, which usually negatively afects the condition number of the

stifness matrices in linear inite elements [Shewchuk 2002]. The

same conditioning requirement is valid in higher order shape func-

tions, and signiicant eforts in meshing are spent to make sure

the local Jacobian of a parameterization is non-degenerate [Johnen

et al. 2013]. In our context, the elements are not the issue: they are

regular hexahedra; but their associated shape functions have not

been restricted to be well conditioned in any way so far.

If our shape functions were scalar functions, a simple functional

to minimize in order to ofer good conditioning would be the usual

Dirichlet energy, ubiquitous in graphics: its minimization favors

equidistribution of gradients throughout the domain. We propose

the same functional, but now for our tensor-valued functions: we use

the integral over a coarse element Ωe of theM-weighted Frobenius

norm of the gradient of our coarsened shape functions, i.e.,∑
i

∫
Ωe

tr
(
(∇NH

i )T : M : ∇NH
i

)
dX (11)

whereM is a given symmetric d ×d ×d ×d rank-4 tensor (and ∇NH
i

is d × d × d tensor because we use matrix-valued functions).

Choice of M . Note that if M is chosen to be the identity tensor

M = �, this functional is simply the L2 norm of the gradient ield.

Minimizing this functional will equalize the spatial distribution of

the shape functions, thus rendering them appropriate for numerical

simulation. Another choice ofM is interesting as well in our context:

if one expands the nonlinear potential energy density Ψ around the

x

y

z

Fig. 3. Harmonic deformation. Using six diferent linear solves, the łhar-

monic displacementsž [Kharevych et al. 2009] of a given composite material

(here, an object with alternating layers of a stif and a sot material) are

computed from a set of linear traction fields on the boundary.

rest state to the second order, one inds

Ψ(�+∇u) ≈ Ψ(�) +
∂Ψ

∂F
(�) : ∇u +

1

2
(∇u)T :

∂2Ψ

∂F 2
(�) : ∇u,

where we used F =�+∇u for the deformation gradient. Evaluated at

the rest state (u=0), this Taylor expansion reduces to a quadratic

form using the stifness tensor ∂2Ψ/∂F 2 at rest, already leveraged

to ind harmonic displacements in Section 3.2. Thus, one can also

use M = ∂2Ψ/∂F 2 |u=0: this is another smoothness measure of the

gradient ields of our shape functions, this time adapted to the

material model. We call these two conditioning functionals harmonic

and Ψ-harmonic respectively.

harmonic Ψ-harmonicFine

Fig. 4. Neo-Hookean composite bar. For the deformation of a composite

compressible neo-Hookean material (Poisson’s ratio is 0.45, Young’s mod-

ulus is 103 vs. 5 · 104) under gravity (let), using Ψ-harmonic conditioning

(right) makes the shape functions less conforming, resulting in a slightly

soter behavior compared to the basic harmonic conditioning (center). Bot-

tom insets visualize the reconstructed fine mesh to exhibit more clearly the

fine scale diferences.

3.4 Constrained optimization

Solving for the optimal shape functions is now simple: we ind, for

each coarse element, the corner shape functions that satisfy all the

geometric and physical conditions while being best conditioned.

This is achieved through a constrained quadratic optimization on

the degrees of freedom {ni j }i j . Thus, for each coarse element ΩH
e ,

we compute the solution to the following constrained minimization:

argmin
{ni j }

∑
i

∫
Ωe

tr
(
(∇NH

i )T : M : ∇NH
i

)
dX ,

s. t.
∑
i

ni j = �, ∀X
h
j ,∑

i

ni j [X
H
i ]× = [Xh

j ]×, ∀X
h
j∑

i

ni jhab (X
H
i ) = hab (X

h
j ), ∀X

h
j , ∀a,b

ni j = δi j �, ∀X
H
i ,X

H
j .

(12)

This numerical optimization reduces to a quadratic optimization on

the matrices ni j with the linear constraints presented in Eqs. (6-8)

and (10). By assembling all the DOFs of a given element into a vector

ne , the constraints can be expressed as a linear system

Cne = y. (13)

To accelerate the solve while ensuring that these hard constraints

are met, we compute the kernelU ofC and ind an arbitrary solution
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n0e of Eq. (13). We then rewrite the unknown vector as

ne = Uq + n
0
e , (14)

where now the subspace coordinate q is the new, smaller vector

to optimize for. In practice, we use Suitesparse’s QR solver [Davis

2017] to ind the arbitrary solution and the kernel, and the reduced

coordinates of the shape functions are obtained by simply solving

a linear system to minimize the additional regularization. By con-

structing our shape functions with this optimization, the resulting

coarsening procedure applies to a much wider range of hyperelastic

materials, such as neo-Hookean models. This is in sharp contrast

with previous work like [Kharevych et al. 2009; Nesme et al. 2009]

that are limited to linear constitutive models. Moreover, because

our constraints include exact preservation of key łharmonicž defor-

mations, the numerical efect of inter-element coarsening is better

accounted for as our results will demonstrate in Section 4. Finally,

note that given that we use regular grids, one-level coarsening (i.e.,

each dimension reduced by a factor of two) results in 1944 DOFs for

basis discretizations per coarse element (8 vertices, each having 27

ine nodes to store the basis, and each node storing the 9 coeicients

of a matrix) while it goes up to 9000 for two-level coarsening. The

kernel dimensions of the constraints (i.e., the efective DOFs) in

these two cases are 684 and 4212 respectively.

Fig. 5. Harmonic vs.Ψ-harmonic conditioning.On a neo-Hookean com-

posite material (let), harmonic conditioning (center) outperforms material-

aware conditioning (right), although proper averaging of the fine node

positions to post-process discontinuities across coarse elements leads to

very similar visual results.

3.5 Balancing function continuity and local stifness

Now that the precise optimization used to construct shape functions

have been formulated, the choice of harmonic vs. Ψ-harmonic con-

ditioning can be discussed in more detail. Ideally, basis functions

should be continuous between elements and they should properly

capture the local stifness of their elements. But both conditions can

only be obtained for very ine grids that capture all the details of a

composite material.

Selecting M = � does promote inter-element continuity as illus-

trated in Fig. 4 as the local shape functions are made as smooth as

possible; however, this smoothness may introduce more potential

energy in coarse elements with an inhomogeneous material: forcing

continuity across elements puts a limit on how well the potential en-

ergy is approximated. The Ψ-harmonic conditioning, instead, allows

each single coarse element to relax to its minimal energy state while

only keeping the common nodes between neighboring elements

at the same location (due to the interpolation constraints). While

this will better match the local stifness of the ine elements, the

inter-element discontinuities are allowed to be larger (see Fig. 4),
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Fig. 6. Coarsened eigenvalues. For a two-material linear elastic bar with

alternating stifness, we compare the spectrum (eigenvalues of Ku =λMu ,

M being the lumped mass matrix) of the local stifness matrix (for one

composite coarse element, let) and of the global stifness matrix (right).

Our coarsening reproduces the spectrum significantly more accurately than

trilinear basis functions.

especially if neighboring coarse elements have widely diferent ma-

terial composition. Thus, this choice may soften the global behavior.

We will see in Section 4 that this analysis is conirmed by our

experiments. Fig. 6 demonstrates this behavior by exhibiting the

spectrum of the stifnessmatrix of a composite linear elastic material,

for a single element as well as for the whole object. In particular, it

clearly highlights that traditional linear shape functions on a coarse

mesh make the results clearly too stif because it completely elimi-

nates the inter-element discontinuity, signiicantly increasing the

inter-element stifness. Note again that our approach sharply con-

trasts with the use of jump penalty terms in Discontinuous Galerkin

methods [Cockburn et al. 2011] which help to limit discontinuities

through non-physical regularization.

4 RESULTS AND EVALUATION

In this section, we irst discuss how our method actually simulates a

coarsened object by providing a few relevant implementation details.

We then demonstrate the balance between geometric continuity

and material awareness that our numerical coarsening ofers by

comparing its advantages over other existing methods.

4.1 Simulation of Coarsened Model

Once the coarsened basis functions NH
i have been computed for a

given ine object, simulating the deformation of this object subject to

an external force ield and/or positional constraints proceeds mostly

like with a regular Finite Element Analysis solverÐwith the excep-

tion that our tailored shape functions are used in lieu of the usual

polynomial functions. We however point out a few implementation

details that we found useful in our own implementation.

Local frame estimation. The polar decomposition of the deforma-

tion gradient at the center of the parametric domain Ωe required to

express the displacement ield in Eq. (5) can be computed only once

for every iteration of the solver: considering this frame constant per

iteration does not give rise to convergence issues or instabilities.

Pointwise deformation gradient. Evaluating the deformation gra-

dient can be achieved through quadrature, as typically done when

dealing with higher-order polynomial shape functions. To integrate

the elastic potential using a standard quadrature scheme, we map
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Fig. 7. Comparing with [Kharevych et al. 2009]. We compare our results (red) to theirs (green) for 4 examples involving linear elastic composite materials

(let). Histograms of mean and max displacement errors w.r.t. fine simulation averaged over 388 diferent tests are shown for both methods (right).

the element domain Ωe to the isoparametric domain [−1, 1]d (with

coordinates referred to as ξ ), and apply the chain rule to evaluate the

composition [Irving et al. 2006]: for each quadrature point on coarse

element, the actual pointwise gradient ∇Xx of the deformation is

∇Xx =∇Xu + � = (Re − �) +
∑
i

Re ⊗ (RTe xi − Xi ) :
∂NH

i

∂X
+ �

=Re +

(∑
i

Re ⊗ (RTe xi − Xi ) :
∂NH

i

∂ξ

) ©­«
∑
j

X j

∂N
H
j

∂ξ

ª®¬
−1 (15)

where u is the displacement ield, X is the material point and N
H
i

are the conventional trilinear shape functions used in Sec. 2.4 to

estimate the local frames Re . Note that the tensor product symbol ⊗

between the matrix Re and the vector RTe xi −Xi generates a rank-3

tensor, which is then contracted against ∂NH
i /∂X .

Quadrature scheme. In our implementation,

if a coarse element contains nd ine elements,

we use a n-point Gaussian quadrature for each

dimension. The inset shows a 2D illustration

for a coarse element with 4 × 4 ine elements.

For each quadrature point, we can easily eval-

uate the deformation gradient using Eq. (15),

from which the pointwise elastic potential and its gradient can be

computed. Forces are then computed by a weighted sum of these

values at quadrature points with associated weights (approximating

their integral counterparts) as done in, e.g., [Irving et al. 2006].

Fine detail reconstruction. Because we enforced that our shape

functions interpolate the coarse nodes, visualizing the deformed

coarse grid is trivially achieved (we just displace a node XH
i by ui )

and does not require any blending. However, our optimized shape

functions also allow us to eiciently reconstruct the ine deformation

that a coarse deformation captures simply by using Eq. (5): detailed

anisotropic and non-uniform deformations are well captured, as

shown in Fig. 8. If watertight ine meshes are required for visualiza-

tion purposes, averaging of the ine nodes on each side of coarse

elements can be done to remove the generally small discontinuities

between elements during simulation.

Fig. 8. Coarsened vs. fine embeddings. The fine-scale accordion efect

created by a two-material composite (St Venant-Kirchhof) object (dark

blue: stif; light blue: sot) is well captured by the embedded 64-times finer

grid (see closeup), making the coarsened simulation material-aware.

Enriching representative displacements. In order to further reduce

inter-element discontinuity, a natural idea is to generate more rep-

resentative displacements and force their exact reproduction as we

did for the harmonic displacements. We tried to use the 200 lead-

ing eigenvectors of the tangent stifness matrix ∂2Ψ/∂X 2 at rest as

additional constraints in Eq. (12). The results were nearly identical,

implying that this large number of additional constraints were, in

fact, nearly colinear to the six harmonic ones per coarse element.

Using global harmonic displacement or eigenvectors at deformed

states in a principled manner (and not just through random forcing

which could stifen the results signiicantly) would be an interesting

extension that we leave as future work.

4.2 Advantages over representative methods

We tested our approach on a number of examples to demonstrate its

advantages compared to basic inite element analysis for coarse grids

and existing coarsening methods. Three diferent elastic models are

employed in this paper: linear elasticity, St Venant-Kirchhof models,

and neo-Hookean models. For each composite model, Young’s mod-

ulus of the stifer material is 50 times the one of the softer material.

The Poisson’s ratio of all the materials is set to 0.45 (except for the

stress test in Fig. 9 where we use 0.4999 to illustrate the absence of

locking or overstifening in this challenging case).

Coarsening of homogeneous material. As a irst test, we try our

method on a homogeneous material. As shown in Fig. 10, our results

obviously outperform the typical use of linear shape functions on

such a coarse grid: while usual FEM elements lead to signiicant

over-stifening on coarse resolutions due to low-order polynomial

functions and conforming elements, our discontinuous tensorial

shape functions allow for a very accurate capture of deformation.
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Fig. 9. High Poisson’s ratio. Coarsening (center) of a homogeneous neo-

Hookean material with Poisson’s ratio 0.4999 shows nearly perfect agree-

ment with the finemesh simulation (let), while a traditional FEM simulation

(right) fails to handle this challenging case.

Fig. 10. Neo-Hookean arch. An arch-shaped bar made out of a homoge-

neous neo-Hookean material is bent via a fine grid (let); our coarsened

simulation matches the shape (center); regular trilinear shape functions fail

to capture large deformation in the legs and the curvature of the bar (right).

Relation to [Kharevych et al. 2009]. Themost signiicant advantage

of our method over the work of Kharevych et al. [2009] is the ability

to handle non-linear constitutive models (e.g., the neo-Hookean

material in Fig. 4). If we apply our method to corotational linear

elasticity, our results are visually comparable to their upscaling

of the elasticity tensor, which is to be expected as we use their

harmonic deformations to optimize our shape functions. We even

perform better in terms of coarse node displacement errors (both in

mean and max) as illustrated by the histogram in Fig. 7, obtained

by running 388 diferent deformation test examples.

Relation to [Nesme et al. 2009]. Similarly, the original approach

of Nesme et al. [2009] cannot handle non-linear materials either.

While they also use a co-rotational treatment, our use of tensorial

shape functions ofers more degrees of freedom to capture the be-

havior of an arbitrary composite material. Moreover, one can argue

that their use of a clamped far boundary condition per element

helps improve inter-element continuity by construction. The obvi-

ous adverse efect is, however, an increase in the global stifness.

We can try to reproduce this condition in our method by adding

it as a constraintÐat the cost of removing the constraint of exact

preservation of the key łharmonicž deformations (see Section 3.2)

since the two constraints would be in conlict. For numerical condi-

tioning, the Ψ-harmonic regularization is better than the harmonic

one in this case (M = � is nearly identical to using trilinear func-

tions). Still, as shown in Fig. 11, this clamped boundary treatment

induces stifness by favoring conforming elements, indicating that

their per-coordinate coarsening approach with clamped boundary

fails to capture complex material behavior. Our results are much

closer to the real material’s behavior, as our matrix-valued shape

functions reproducing harmonic displacements reduce the local

stifness engendered by neighboring elements as much as possible.

Relation to DDFEM. Our experiments with [Chen et al. 2015] in-

dicates a strong dependence of their technique on the training set:

following their dataset generation strategy, we generated two dif-

ferent training sets using diferent magnitudes of forces, and ind

the results to be signiicantly diferent, see Fig. 12. Their reliance

on a regularization weight also requires time-consuming manual

tuning. If a small regularization is chosen, their per-element coars-

ening with no conforming constraints leads to overly soft results;

conversely, a high regularization weight will overly stifen all coarse

elements, see Fig. 13. This is a serious practical limitation: if difer-

ent parts of an object have diferent material compositions (e.g., a

bar with its left part being homogeneous and its right part being

inhomogeneous), no uniform weighting parameter will be adequate:

a proper weighting really depends on the material composition in

the neighboring elements. With our global harmonic reconstruc-

tion constraints, our method successfully gets rid of the need for a

manually ine-tuned parameter or a choice of force magnitude.

4.3 Conditioning choice

We also tested both conditioning functionals discussed in Section 3.3.

The material-based conditioning induces softer results than the ine

mesh because inter-element discontinuity is not as strongly penal-

ized. Instead, the identity metric usually leads to better balance

between intra-element material awareness and inter-element con-

formation.We providemore comparisons between these twometrics

in Fig. 5. While the two functionals can be used, we recommend the

use of the simple unweighted Frobenius norm in practice.

Fig. 11. Deformation of neo-Hookean models. On four diferent tests,

a fine mesh simulation (let) is well reproduced by our coarsened grid where

harmonic conditioning has been used (center). For comparison, we also

show a coarsened model where clamped far boundary conditions [Nesme

et al. 2009] are imposed in lieu of harmonc displacements (right).
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Fig. 12. Influence of training set on DDFEM. The DDFEM ap-

proach [Chen et al. 2015] depends heavily on the training set, even for

homogeneous materials: a set of deformations based on small magnitude

random forcing (let) generates very diferent results than with 100-times

stronger forcing (right). Since force fields with larger variations will lead

to extreme local deformation, the incompatible energy profile makes the

results much soter. A neo-Hookean model is used here.

λ = 0.1 λ = 0.02

λ = 0.02 λ = 0.1

Fig. 13. Limitations of DDFEM. Although these neo-Hookean objects are

composed of the exact same two materials sandwiched in the same patern,

one has to apply diferent regularization weights to get visually consistent

results on coarse and fine meshes (upper row). Diferent weights leads to

significant error (botom row).

4.4 Large deformation

Even though our method gets much lower mean displacement errors

than with traditional trilinear basis functions, the approximation

error of a coarse discretization increases with the magnitude of

the deformation. Consequently, our optimized basis functions may

fail to capture very large and highly nonlinear deformation, as

shown in Fig. 14: after all, the basis functions are only capable of

exactly reproducing the representative displacements at the rest

state. Since the basis functions are locally supported, we can still

expect low approximation error for a range of deformation even if

the basis functions are optimized around the rest state. However,

very large deformation of highly nonlinear elastic composite models

are bound to be challenging for our coarsening approach. How to

further transform basis functions to properly adapt to very large

deformation is an important and challenging problem to be tackled.

4.5 Coarsening of dynamics

Since our homogenized shape functions can capture a broad range

of deformation, they are ideally suited for elastostatics, i.e., inding

deformation for given force ields. However, they can also be used in

the more general context of dynamics using a lumped mass matrix

for coarse elements that is simply constructed by summing the

contributions from the ine mass matrix (see Figs. 15 and 16). This is,

however, an approximation as recognized in previous work [Chen

0

0.2

0.4
Optimized

Trilinear

0

0.2

0.4 Optimized

Trilinear

M
D
E

M
D
E

д 20д д 20дgravity gravity

Fig. 14. Displacement error for large deformation. Under various grav-

itational accelerations (from д to 20д), deformation grows and so does the

mean displacement error (MDE) for both optimized (red) and trilinear basis

functions (green), tested on 2 diferent examples of material composition

using a neo-Hookean model. Note that a large deformation of an ABAB

composite structure (let) is not well captured by our basis functions, while

an ABBA composite structure (right) is free of such issue.

et al. 2017; Kharevych et al. 2009]: phase errors will accumulate over

time (see Fig. 15). This is to be expected since we do not coarsen

the inertia and the associated basis functions for the velocity ield,

and our shape functions are optimized in the rest state: these two

facts can lead to an inaccurate capturing of the natural frequency

of the dynamical system. As reported in previous works, this rarely

afects the visual impact of simulation. Fabrication methods may

require further improvements in this direction [Chen et al. 2017].

4.6 Performance and timing

The oline computation of our numerical coarsening approach re-

quires solving for d(d +1)/2 global harmonic displacements and

optimizing the coarse element shape functions. The cost of the irst

step is mainly related to the size of the ine mesh and each harmonic

displacement can be computed in parallel. The computational time

required for the shape function optimization for a given coarse el-

ement is strongly inluenced by the ratio between coarse and ine

0 50 100 150 200

−0.4

−0.2

0

trilinear at Ωh trilinear at ΩH harmonic on Ω
H

d
is
p
la
ce
m
en
t

Fig. 15. Coarsened dynamics. Our method (top right) also captures the

dynamic behavior of a neo-Hookean composite material (top let)). The

curves (botom) show the vertical displacement of the light-blue node in

time. Comparing with simple FEM coarsening (green), our result (blue)

matches the one of the fine mesh (red) much more closely.
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Frame 0

Frame 20

Frame 27

Fig. 16. Falling heart. The heart model with an empty chamber, whose fine

discretization has 89400 cells and 161060 nodes, is falling on the ground. For a

one-level coarsened model with 11175 cells and 28942 nodes, the simulation

using our optimized basis functions (middle) looks nearly identical (let),

while trilinear basis functions (right) lead to obvious inaccuracies.

grid elements; for instance, a matrix-valued shape function has 1944

(resp., 9000) DOFs for a coarse element containing 23 (resp., 43)

ine elements respectively. We provide timings for a single coarse

element’s optimization in Section 4.6 for various examples shown

in this paper. Note inally that all coarse elements can be processed

in parallel, and the computational complexity for basis optimization

only depends on the number of coarsening levels.

At runtime, positional constraints (used to anchor selected nodes

to a given position) are implemented as penalty, and Newton’s

methodwith trust region is used to solve the resulting unconstrained

optimization problem of Eq. (1). We terminate the Newton iterations

when the ininite norm of the gradient is less than 1e−6 or the num-

ber of iterations exceeds 20. Directly solving the problem on a ine

mesh using classical FEM is obviously slower that our coarsened

treatment by at least a factor proportional to the ratio between the

coarse and the ine grid sizes. When each coarse element contains

8 ine elements (that is, each dimension was coarsened by a factor

two), solving each linear system involved in a Newton iteration

takes 20 to 50 times less on the coarse mesh than on the ine mesh.

This acceleration can reach over 1000 times when each dimension

is coarsened by a factor 4. Moreover, convergence is typically faster

on coarse meshes (a well-known property exploited in multigrid

methods); our experiments conirm this fact too: as shown in Fig. 17,

the solver converges faster on the coarse mesh. The acceleration

factors due to faster linear solves are thus very predictive lower

bounds for the acceleration in wall-clock time of our coarsening ap-

proach. Overall, a single-level coarse simulation runs approximately

Table 1. Statistics. Timing (in seconds) of ofline computations on a Xeon(R)

E5-2630 CPU. Complexity (in elements and vertices) of the fine and coarse

meshes are shown for each model. Columns denoted hab and ni j indicate

the time needed to solve one global harmonic displacement on the fine mesh

and the shape functions’ optimization for one coarse element respectively.

Model #Ωhe #node in Ω
h #ΩH

e hab ni j
cube 4096 4913 64 2.15 7.5

aircraft 21328 26801 2666 29.82 0.25

bridge 5632 7565 704 2.79 0.25

beam 2048 2673 256 0.82 0.25

hand 26176 31337 3272 35.01 0.25

60 times faster than on the ine mesh, without signiicant visible

error; a two-level simulation typically runs over 1000 times faster

than its ine simulation.

Finally, the dynamic simulation in Fig. 15 is performed through

a variational implicit integrator [Martin et al. 2011], and achieves

similar speedups to the static case. Because of inertia, the deforma-

tion between two frames is relatively small, so the Newton solver

usually takes only 10 iterations on the ine mesh and 7 iterations on

the coarsened mesh.

5 LIMITATIONS AND FUTURE WORK

Our numerical coarsening through the optimization of shape func-

tions brings signiicant improvements upon previous methods fo-

cusing on capturing complex deformation at low computational cost.

In particular, combining the use of matrix-valued shape functions

and their element-wise corotational frames ofers the ability to ex-

plore the careful balance between homogenization of each element’s

behavior and inter-element induced stifness during simulation.

While our approach can capture composite materials made of

non-linear constitutive laws, we believe that a number of variants
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Fig. 17. Hand playing piano. For a coarsened hand model (right) whose

fingers dynamically bend under gravity, convergence of the solver based on

the (infinite norm of the) gradient (botom) happens much earlier than for

the fine model (let), and takes about 1/60-th of the computational time.
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and extensions would be interesting to explore, and could further

alleviate the current limitations. First, the use of analytical shape

functions may be suicient for simple materials, removing the need

for a large amount of DOFs and potentially allowing realtime use in

gaming. The spatial discretization of shape functions may at least

be adapted based on the local non-linearity of the material to reduce

the DOFs that need to be optimized without losing too much accu-

racy in the process. Second, better cubature schemes and solvers

may improve solver eiciency further. Third, providing a robust ap-

proach to numerical coarsening of dynamics using inhomogeneous

mass matrices would be an important extension that we have not

attempted to address. We believe that space-time coarsening may be

necessary to achieve accurate results. Fourth, applying our ideas to

acoustics or other physical modeling tasks would also be valuable.
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Fig. 18. Stress distribution. The trace of the (first Piola-Kirchhof) stress

tensor exhibits a similar distribution for fine vs. coarsened meshes. On the

plane example of Fig. 1, we observe the expected large stretches (positive

trace on wing top, let) and compressions (negative trace on wing botom,

right) over the parts of the plane containing the stifer material.
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